<&« UNIVERSIDADE
\¢)s FEDERAL po CEARA

%% CAMPUS QUIXADA

Fundamentos de JavaScript

QXD0020 - Desenvolvimento de Software para Web

Prof. Bruno Gois Mateus (brunomateus@ufc.br)

mailto:brunomateus@ufc.br

Agenda

* |Introducao
* Visao geral

* Objetos e Funcoes

Introducao

Introducao

0 que e JavaScript?

* Uma linguagem de scripts e interpretada criada em em meados da década
de 90 pela Netscape Communications

* Multiparadigma, da suporte a programacao funcional e imperativa
* Possui tipagem dinamica
 Uma das trés principais tecnologias da World Wide Web

e Desde 2013 ¢ a linguagem mais popular de acordo com o StackOverflow
Survey

https://insights.stackoverflow.com/survey/2021#most-popular-technologies-language
https://insights.stackoverflow.com/survey/2021#most-popular-technologies-language
https://insights.stackoverflow.com/survey/2021#most-popular-technologies-language
https://insights.stackoverflow.com/survey/2021#most-popular-technologies-language

Introducao

Javascript

 |nicialmente foi criada atender a demanda crescente por sites mais interativos e dinamicos
“front-end”

* |nserir texto dinamicamente no cédigo HTML

* Reagir a eventos (ex: carregamento da pagina, cliques do usuario)

* Pegar informacoes sobre o computador do usuario(ex: navegador)

* Realizar calculos no computador do usuario (Ex: validacao de formulario)
* Atualmente pode ser utilizado no lado do servidor “back-end”

* Ganhou popularidade em 2019 gracas ao Nodeds

 Também pode ser utilizado para o desenvolvimento de aplicativos moveis

Introducao

Origem

* Criada por Brendan Eich em 1995 para a Netscape

* Originalmente chamado LiveScript

 Mudou de nome por decisao de marketing apoiada na popularidade da
linguagem Java

 Fol lancada no Netscape Navigator 2.0 beta 3

Netscape Navigator ™7
Version 2.01
Copyrght © 1994-19595 Netscape Commumacatons Corporation, All nghts reserved

* QOriginalmente implementada como parte dos navegadores P et et

terms Defore using this softwrase.

epott any peoblems through the faedhack page.

R
N E T S C A P E Netscope Comnunications, Netscape, Netscape Navigator and the Netscape Communications logo are
tredeneks of Netscape Comannezcations Corpecalion.

* Permitir a execucao de scripts do lado do cliente

Containe Java™ goftware developed by Sun Microsyetems, Ine
Copynight © 1992-1995 Sun Miczosystens, Ine. AL Rights Reserved

* |nteracao com o usuario sem a intervencao do servidor

Introducao

Evolucao

Lancamento .

Eich escrevee a linguagem em 10
dias, em maio de 1995

ESMAScript

O ECMAScript 1 e 2 foram
lancados em 1997

ECMAScript 4

Lancada a versao 4

ECMAScript 2017

Mudanca na
Nomenclatura

Padronizacao

A Netscape submeteu o
JavaScript a ECMA International
para criar uma especificacao
padrao

ECMAScript 3

Lancada a versao 3

ECMAScript 6

Lancada a versao 6

* Implementado como JScript pela Microsoft por meio de
eng. reversa

* Internet Explorer 3

 Tornou dificil o funcionamento de um site em
diferentes navegadores

» ECMA Script 4 comeca a ser a desenvolvido em 2000

* Apesar de implementar parte da especificacao, a
Microsoft nao tinha intencao de cooperar

* Lancado em 2008 apods o trabalho conjunto entre a
Mozilla, Macromedia (ActionScript) e Brendan Eich

* ECMA Script 5 lancado em 2009 selou a paz entre as
empresas

e Passou a contar com uma versao anual

Visao geral

Visao geral
Tipos de dados

* Number
* Null

* Undefined
e String

* Boolean
* Object

* Bigint

e Symbol

Visao geral

O tipo number

 Nao ha separacao entre numeros inteiros e numeros reais
« Ambos sao do mesmo tipo, number

e Operadores aritméticos:
o +, -, 5/, %, ++, -, +=, -=, *=, /=, Y%=, =

« Mesma precedéencia do Java

e Cuidado: Muitos operadores realizacao conversao automatica de tipos

10

Visao geral

Declarando variaveis

» \ariaveis podem ser declaradas usando trés palavras chaves
e var, let (ECMAG) e const
* O tipo da variavel nao é especificado

* As funcao typeof retorna o tipo de dados de objeto

11

Visao geral

var vs let vs const

Declaracoes Escopo Pode ser alterada
var Global (hoisting) / Funcao Sim
let Bloco Sim
const Bloco Nao

12

Visao geral

var vs let vs const

console.log(mensagem) ;
mensagem = "declaracao";
mensagem = ‘“redeclaracao”;

console.log(mensagem) ;

mensagemz = 'Msqg';
console.log(mensagem) ;
mensagem?’;

saudacao = "o1i";

n = 4;

(n > 3) |
saudacao = "ola;

J

console.log (saudacao) ;

Visao geral

var vs let vs const

exibirMensagem ()
msmForaDolf = 'Msg 1';

()
msgDentroDoIf = 'Msg 2';
console.log(msgbDentroDolf) ;

J

console.log (msgForabDolf) ;
console.log(msgDentroDoltf) ;

exibirMensagem () {
msmForaDolIf = 'Msg 1';

) A

msgDentroDoIf = 'Msg 2';

letMsg = 'let';
console.log (msgbentroDolIf) ;

J

console.log (msgForabDolf) ;
console.log(letMsqg) ;

14

Visao geral

null e Undefined

e null
» Existe, mas foi atribuido com vazio
e Deliberadamente sem valor
e undefined
e Variaveis declaras, mas nao inicializadas

 Membros objeto/Array que nao existem

15

Visao geral
O tipo String

* Principais métodos

* charAt, charCodeAt, fromCharCode, indexOf, lastindexOf, replace, split,
substring toLowerCase, toUpperCase

e + & 0 operador de concatenacao

16

Visao geral

O tipo String e os seus principais métodos

Método / Propriedade Descricao

length Propriedade que contém o tamanho da string

concat() Concatena um ou mais strigs

indexOf() Retorna a primeira ocorréncia de um caractere na string
lastindexOf() Retorna a ultima ocorréncia de um caractere na string
match() Verifica a ocorréncia de uma expressao regular na string
replace() Substitui alguns caracteres na string

slice() Extral em uma nova string, parte da string original
split() Quebra a string em um array de strings

toLowerCase() Mostra a string em letras minusculas

toUpperCase() Mostra a string em letras maiusculas

17

Visao geral

Conversao entre String e Number

e Convertendo String em numeros

count = 10;
= """ 4+ count;

count + " bananas, ah ah!";
parselnt ("42 1s the answer");
parseFloat ("booyah") ;

e Acessando caracteres

firstlLetter = s[0];
firstlLetter = s.charAt (0) ;

lastLetter = s.charAt(s.length - 1);

18

Visao geral

Comentarios

e |déntico ao do C

19

Visao geral

Estruturas de controle

o if / else
e |déentico ao java
* Praticamente qualquer coisa pode ser usada como condicao

e Operador ternario

20

Visao geral

O tipo booleano

* Qualqguer valor pode ser usado como Boolean
e \alores considerados false:
e 0, 0.0, NaN, "", null, e undefined
* Valores para verdadeiro
 Todos o resto

 Convertendo um valor para boolean explicitamente

21

Visao geral

O tipo booleano

boolValue Boolean (outroValor) ;

1L.1kel90M ;
1eIsGood = "IEOG" > 0O;

("web dev 1s great") {

(0) A J

22

Visao geral

Operadores relacionais

Operadores Descricao
> Maior que
>= Maior que ou igual a -

A maioria dos
< Menor que

. operados convertem

<= Menor que ou igual a _

os tipos
—= lgualdade :

, automaticamente

|= Diferente

—== lgualdade sem coercao

|== lgualdade com coercao

23

Visao geral

Operadores relacionais

A maioria dos operadores convertem os tipos automaticamente

e ——= e ! == nao realizam a conversao de tipo

5 < W7o
42 == 42.0

"y 0" ==
"y 0" ===

24

Visao geral

Operadores logicos

Operadores Descricao
&& E
Ou

Negacao

25

Visao geral

Avaliacao Curto Circuito Logico

¢ && e || sO executam o segundo operando, dependendo do resultado do
primeiro

« Util para checagem de objetos antes de acessar seus atributos

» Atribuicao de valor default

O && o.getName () ;

otherName || "default”;

26

Visao geral

Estruturas de controle

e Switch / case

 Comparacao usa o operador ===

Visao geral

Vetores

 Existem duas maneira de inicializar um vetor
e \etores funcionam como estrutura de dados e aumentam de acordo com a necessidade
 Pilhas
* push e pop, adicionam e removem respectivamente
* Fila
* unshift e shift, adicionam e e removem respectivamente
* Principais métodos:

e concat, pop, push, reverse, shift, unshift, slice, sort, splice, toString

28

Visao geral

Vetores

e Existem duas maneira de inicializar um vetor

e O tamanho do vetor aumenta de acordo com a a necessidade

name Arrav () ;

name [1

name [value, wvalue, ..., value];
name [1ndex] = value;

ducks = ["Huey", "Dewey", "Louie"];

stooges = [];
stooges [0] "Larry";
stooges|[1] "Moe";
stooges [4] "Curlvy";
[4] "Shemp";

29

Visao geral

Vetores

* Principais métodos:
e concat, pop, push, reverse, shift, unshift, slice, sort, splice, toString
e \etores funcionam como estrutura de dados

* Pilhas: push e pop, adicionam e removem respectivamente

e Fila: unshift e shift, adicionam e e removem respectivamente

a ["Stef", "JaSOn"];
.push ("Brian") ;
.unshift ("Kelly");

.pop () ;
.shift () ;

.sort () ;

30

Visao geral

Vetores

o split
* Quebra a string em partes utilizando um delimitador
* Pode ser utilizado com expressoes regulares

* jOIN

Transforma um vetor em uma string, utilizando um delimitador entre os
elementos

S "the quick brown fox";
a s.split (" "),

a.reverse () ;
= a.join("!");

31

Visao geral

Estruturas de Repeticao

e while
e do/ while
e for

e for/in e for/of (ECMA 2015)

e break / continue

32

Visao geral

Estruturas de Repeticao - while

* A condicao e testada antes de iniciar a execucao do bloco

(condition) {
code block to be executed

(1L < 10) {
text += "The number 1s " + 1;
1++;

33

Visao geral

Estruturas de Repeticao - do/while

* A condicao e testada apos a execucao do bloco

* O laco é executado pelo menos uma vez
{

code block to be executed

(condition) ;

{

text += "The number 1s " + 1;
1++;

(1 < 10) ;

34

Visao geral

Estruturas de Repeticao - for

* Instrucao 1 - Executada antes de iniciar o bloco
* Instrucao 2 - Executadas antes de cada iteracao do laco

 |Instrucao 3 - Executadas apos a iteracao do laco

(Lnstrucao 1; 1nstrucao 2Z2; 1nstrucao 3) {
code block to be executed

= 0;, 1 < 10; 1++)
(1 === 3) { }
text += "The number 1s " + 1 + "
";

Gl

35

Visao geral

Excecoes

* try

* Obrigatdria . Usada para delimitar o bloco de codigo que pode gerar a excegao
e catch

* O bloco interno € executado caso a excecao ocorra

* A clausula interrompe a propagacao do erro

« E possivel acessar a excecdo lancada
o finally

» E opcional. O seu bloco de cddigo é SEMPRE executado

* Independentemente da excecao ser lancada

« Mesmo que o bloco try possua um return

36

Visao geral

Excecoes

37

Objetos e
Funcoes

Objetos e Funcoes

Funcoes em JS

 Em JavaScript funcoes sao objetos, logo possuem propriedades e metodos
o Meéetodos: apply() e call()

* Propriedades: length e constructor
* Funcoes sao first-class citizen. Podem ser:
 usada como um valor qualquer
e armazenadas em vetores, variaveis e objetos
e passadas como argumentos para outras funcoes

* retornadas por outras funcoes

39

Objetos e Funcoes

Exemplo

exemplo (a, D) {
a * b;

J

exemplo.length
exemplo.constructor

square =
X = square (4)

number * number }

40

Objetos e Funcoes

Passagem de parametros

o E possivel passar qualquer quantidade de parametro para qualquer funcao
e Nao resulta em erro

 Os parametros sao armazenados em uma estrutura similar a um vetor
chamada de arguments

* A propriedade length de uma funcao armazena a quantidade de parametros
da funcao

41

Objetos e Funcoes

O objeto argumento

X = soma(l, 123, 500, 115, 44,

soma () {
1, soma =

0;
(1 = 0; 1 <|arguments.length;
soma += arguments[i];

J

S OlIla ,

38) ;

i4+)

{

42

Objetos e Funcoes
Rest parameter - ECMA 6

x = soma(l, 123, 500, 115, 44, 88);

soma (/. ..args|) 1
soma = 0;

(arg args) soma += arg;
soma;

X = soma (4,

Objetos e Funcoes
Valor default - ECMA 6

soma (x,|y = 10)
X + V;

{

44

Objetos e Funcoes

Auto-Invocacao

e Sao outra aplicacao para funcoes anonimas
 Sao chamadas imediatamente apos a sua declaracao
e Pode ser utilizada para realizar alguma tarefa sem criar variaveis globais

 Normalmente utilizada para tarefas de inicializacao

"O1 e Adeus";

45

Objetos e Funcoes
Callback

a = |
'"Hydrogen', "Helium', "Lithium', 'Beryllium'

| 5
az = a.map ((s) { s.length;
console.log(az);

H) o,

46

Objetos e Funcoes
Arrow functions - ECMA 6

a = |
'"Hydrogen', "Helium', "Lithium', 'Beryllium'
17
a3 = a.map (s => s.length):
console.log(a3);

)

a

{
+ 100;

(a, b
a + Db

Objetos e Funcoes

Funcoes Internas

somaQuadrados (x, V) {

elevaAoQuadrado (x) {
X KKk D

elevahAoQuadrado (x) + elevaAoQuadrado (y) ;

J

* Funcoes internas tem acesso as variaveis do seu escopo e do seus parentes

48

Objetos e Funcoes

Clousures

global = 100;

externa () {
ext = 10;
global++;
interna () {
inter = 20;
console.log(inter=${inter}, ext=${ext}, global=S${global}l);
ext++;
global++;

interna;

externa () ;
externa () ;

Escopo global
global = 100

Funcao externa
ext =10

Funcao Funcao
Interna Interna

ext = 10++ ext = 10++
Inter = 20 Inter = 20
global ++ global ++

49

Objetos e Funcoes

 Simples pares nome-valor, como
* Dicionarios em Python
« Hashes em Perl e Ruby
* Hash tablesem C e C++
« HashMaps em Java
* Arrays associativos em PHP
 Muito comuns, estrutura de dados versatil

 Nome €& uma string e o valor pode ser qualquer coisa

50

Objetos e Funcoes

Sintaxe Literal de Objetos

pikachu = {
nome: "Pikachu'",

especie: "Pikachu",
nivel: 1,

falar: () A

"S{this.nome} S{this.nome} ;

}
¢

51

Objetos e Funcoes
Criacao de Objetos

» E possivel criar objetos de duas formas
e ApOs a criacao é possivel adicionar méetodos e atributos
» E possivel acessar os atributos usando duas notacoes
* Dot notation
 Bracket notation
» E possivel percorrer um objeto

 Podemos ainda usar funcoes construtoras

52

Objetos e Funcoes
Criacao de Objetos

» E possivel criar objetos de duas formas

e ApOs a criacao é possivel adicionar méetodos e atributos

pikachu = {
nome: "Pikachu'",
especile: "Pikachu",
nivel: 1,
falar: () {

"S{this.nome} S{this.nome} ;

charmander = Object () ;
charmander.nome = "Charmander";
charmander.falar = () => "chaarrr";

J

53

Objetos e Funcoes

Acessando atributos

* E possivel acessar os atributos usando duas notacoes
* Dot notation

e Bracket notation

pikachu = {
nome: "Pikachu'",

J

charmander = Object () ;
charmander.nome = Y“Charmander”;

console.log (pikachu.nome) ;
console.log(charmander['nome']) ;

54

Objetos e Funcoes

Percorrendo um objeto

pikachu = {
nome: "Pikachu'",
nivel: 1,

(attr pikachu) {
console.log(S{attr} = S${pikachulattr]}):;

([attr, value] Object.entries (pikachu)) {
console.log(${attr} = S{value}’);

{ value Object.values (pikachu)) {
console.log(${value}) ;

Objetos e Funcoes

Funcoes construtoras

Pokemon (nome, especie, nivel=1l) {

.nome = nome;
.especle = especle;
.nivel = nivel;

.falar = () => "S{this.nome} ${this.nome} ;

plkachu = Pokemon ("Pikachu",
charmander = Pokemon ("Charmander", “Charmander”,

"P1kachu") ;

nivel=1)

56

Objetos e Funcoes
Classes - ECMA 6

 Nova sintaxe adicionada no ECMA 6
» JavaScript continua sendo baseada em prototype
* Facilita a implementacao de heranca

» Syntatic Sugar -> Parecido com outra linguagens

57

Objetos e Funcoes
Classes - ECMA 6

Pokemon {
(nome, especie, nivel=1l) {
.nome = nome;
.especle = especle;
.nivel = nivel;
}

falar = => S{this.nome}! ${this.nome} ;

get nivel () { . nivel}
set nivel (valor) { . nivel = valor > 0 ? valor : 1}

J

pikachu = Pokemon ("Pikachu", "Pikachu", -1);
console.log(S${pikachu.falar ()} S${pikachu.nivel}); // pikachu pikachu 1

Referencias

» https://blog.betrybe.com/javascript/

o https://developer.mozilla.org/pt-BR/docs/Web/JavaScript

* https://developer.mozilla.org/pt-BR/docs/| earn/JavaScript

o https://pt.wikipedia.org/wiki/JavaScript

» https:.//javascriptrefined.io/nan-and-typeof-36cd6e2ade43

e https://www.toptal.com/javascript/es6-class-chaos-keeps-|js-developer-up

59

https://blog.betrybe.com/javascript/
https://developer.mozilla.org/pt-BR/docs/Web/JavaScript
https://developer.mozilla.org/pt-BR/docs/Learn/JavaScript
https://pt.wikipedia.org/wiki/JavaScript
https://javascriptrefined.io/nan-and-typeof-36cd6e2a4e43
https://www.toptal.com/javascript/es6-class-chaos-keeps-js-developer-up

Por hoje e soO

