
Prof. Bruno Góis Mateus (brunomateus@ufc.br)

Fundamentos de JavaScript
QXD0020 - Desenvolvimento de Software para Web

mailto:brunomateus@ufc.br

Agenda

• Introdução

• Visão geral

• Objetos e Funções

2

Introdução

Introdução

• Uma linguagem de scripts e interpretada criada em em meados da década
de 90 pela Netscape Communications

• Multiparadigma, da suporte a programação funcional e imperativa

• Possui tipagem dinâmica

• Uma das três principais tecnologias da World Wide Web

• Desde 2013 é a linguagem mais popular de acordo com o StackOverflow
Survey

4

O que é JavaScript?

https://insights.stackoverflow.com/survey/2021#most-popular-technologies-language
https://insights.stackoverflow.com/survey/2021#most-popular-technologies-language
https://insights.stackoverflow.com/survey/2021#most-popular-technologies-language
https://insights.stackoverflow.com/survey/2021#most-popular-technologies-language

Introdução
Javascript

• Inicialmente foi criada atender à demanda crescente por sites mais interativos e dinâmicos
“front-end”

• Inserir texto dinamicamente no código HTML

• Reagir a eventos (ex: carregamento da página, cliques do usuário)

• Pegar informações sobre o computador do usuário(ex: navegador)

• Realizar cálculos no computador do usuário (Ex: validação de formulário)

• Atualmente pode ser utilizado no lado do servidor “back-end”

• Ganhou popularidade em 2019 graças ao NodeJs

• Também pode ser utilizado para o desenvolvimento de aplicativos móveis

5

Introdução
Origem

• Criada por Brendan Eich em 1995 para a Netscape

• Originalmente chamado LiveScript

• Mudou de nome por decisão de marketing apoiada na popularidade da
linguagem Java

• Foi lançada no Netscape Navigator 2.0 beta 3

• Originalmente implementada como parte dos navegadores

• Permitir a execução de scripts do lado do cliente

• Interação com o usuário sem a intervenção do servidor
6

Introdução
Evolução

• Implementado como JScript pela Microsoft por meio de
eng. reversa

• Internet Explorer 3

• Tornou difícil o funcionamento de um site em
diferentes navegadores

• ECMA Script 4 começa a ser a desenvolvido em 2000

• Apesar de implementar parte da especificação, a
Microsoft não tinha intenção de cooperar

• Lançado em 2008 após o trabalho conjunto entre a
Mozilla, Macromedia (ActionScript) e Brendan Eich

• ECMA Script 5 lançado em 2009 selou a paz entre as
empresas

• Passou a contar com uma versão anual 7

ECMAScript 2017
Mudança na

Nomenclatura

Visão geral

Visão geral
Tipos de dados

• Number

• Null

• Undefined

• String

• Boolean

• Object

• BigInt

• Symbol
9

Visão geral
O tipo number

• Não há separação entre números inteiros e números reais

• Ambos são do mesmo tipo, number

• Operadores aritméticos:

• +, -, *, /, %, **, ++, --, +=, -=, *=, /=, %=, **=

• Mesma precedência do Java

• Cuidado: Muitos operadores realização conversão automática de tipos

10

Visão geral
Declarando variáveis

• Variáveis podem ser declaradas usando três palavras chaves

• var, let (ECMA6) e const

• O tipo da variável não é especificado

• As função typeof retorna o tipo de dados de objeto

11

Visão geral
var vs let vs const

12

Declarações Escopo Pode ser alterada
var Global (hoisting) / Função Sim
let Bloco Sim
const Bloco Não

Visão geral
var vs let vs const

13

console.log(mensagem); // undefined

var mensagem = "declaracao";

var mensagem = “redeclaracao”;

console.log(mensagem); // redeclaracao

mensagem2 = 'Msg';

console.log(mensagem); // Msg

var mensagem2;

var saudacao = "oi";

var n = 4;

if (n > 3) {

 var saudacao = "ola;

}

console.log(saudacao); // "oka"

Usando var é possível redeclarar uma variável

Hoisting / Içamento

Escopo global

Hoisting + Redeclaraçao

Visão geral
var vs let vs const

14

function exibirMensagem() {

 var msmForaDoIf = 'Msg 1';

 if(true) {

 var msgDentroDoIf = 'Msg 2';

 console.log(msgDentroDoIf);// Msg 2

 }

 console.log(msgForaDoIf); // Msg 1

 console.log(msgDentroDoIf); // Ms2

}

function exibirMensagem() {

 var msmForaDoIf = 'Msg 1';

 if(true) {

 var msgDentroDoIf = 'Msg 2';

 let letMsg = 'let';

 console.log(msgDentroDoIf);// Msg 2

 }

 console.log(msgForaDoIf); // Msg 1

 console.log(letMsg); // Erro

}

Visão geral
null e Undefined

• null

• Existe, mas foi atribuído com vazio

• Deliberadamente sem valor

• undefined

• Variáveis declaras, mas não inicializadas

• Membros objeto/Array que não existem

15

Visão geral
O tipo String

• Principais métodos

• charAt, charCodeAt, fromCharCode, indexOf, lastIndexOf, replace, split,
substring toLowerCase, toUpperCase

• + é o operador de concatenação

16

Visão geral
O tipo String e os seus principais métodos

Método / Propriedade Descrição
length Propriedade que contém o tamanho da string
concat() Concatena um ou mais strigs
indexOf() Retorna a primeira ocorrência de um caractere na string

lastIndexOf() Retorna a última ocorrência de um caractere na string

match() Verifica a ocorrência de uma expressão regular na string

replace() Substitui alguns caracteres na string
slice() Extrai em uma nova string, parte da string original
split() Quebra a string em um array de strings
toLowerCase() Mostra a string em letras minúsculas
toUpperCase() Mostra a string em letras maiúsculas

17

Visão geral
Conversão entre String e Number

• Convertendo String em números

18

let count = 10;

let s1 = "" + count; // "10"

let s2 = count + " bananas, ah ah!"; // "10 bananas, ah ah!"

let n1 = parseInt("42 is the answer"); // 42

let n2 = parseFloat("booyah"); // NaN

let firstLetter = s[0]; // fails in IE

let firstLetter = s.charAt(0);// does work in IE

let lastLetter = s.charAt(s.length - 1);

• Acessando caracteres

Visão geral
Comentários

• Idêntico ao do C

19

// comentário de uma linha

/* comentário de

Múltiplas

linhas 		 */

Visão geral
Estruturas de controle

• if / else

• Idêntico ao java

• Praticamente qualquer coisa pode ser usada como condição

• Operador ternário

20

Visão geral
O tipo booleano

• Qualquer valor pode ser usado como Boolean

• Valores considerados false:

• 0, 0.0, NaN, "", null, e undefined

• Valores para verdadeiro

• Todos o resto

• Convertendo um valor para boolean explicitamente

21

Visão geral
O tipo booleano

22

let boolValue = Boolean(outroValor); // Convertendo para Boolean

let iLike190M = true;

let ieIsGood = "IE6" > 0;

if ("web dev is great") { /* true */

if (0) { /* false */ }

}

Visão geral
Operadores relacionais

Operadores Descrição
> Maior que
>= Maior que ou igual a
< Menor que
<= Menor que ou igual a
== Igualdade
!= Diferente
=== Igualdade sem coerção
!== Igualdade com coerção

23

A maioria dos
operados convertem
os tipos
automaticamente

Visão geral
Operadores relacionais

• A maioria dos operadores convertem os tipos automaticamente

• === e ! == não realizam a conversão de tipo

24

5 < “7” // true

42 == 42.0 // true

”5.0”== 5 // true

”5.0”=== 5 // false

Visão geral
Operadores lógicos

Operadores Descrição
&& E
|| Ou
! Negação

25

Visão geral
Avaliação Curto Circuito Lógico

• && e || só executam o segundo operando, dependendo do resultado do
primeiro

• Útil para checagem de objetos antes de acessar seus atributos

• Atribuição de valor default

26

let name = o && o.getName();

let name = otherName || "default”;

Visão geral
Estruturas de controle

• Switch / case

• Comparação usa o operador ===

27

Visão geral
Vetores

• Existem duas maneira de inicializar um vetor

• Vetores funcionam como estrutura de dados e aumentam de acordo com a necessidade

• Pilhas

• push e pop, adicionam e removem respectivamente

• Fila

• unshift e shift, adicionam e e removem respectivamente

• Principais métodos:

• concat, pop, push, reverse, shift, unshift, slice, sort, splice, toString
28

Visão geral
Vetores

• Existem duas maneira de inicializar um vetor

• O tamanho do vetor aumenta de acordo com a a necessidade

29

let name = new Array();

let name = []; //empty array

let name = [value, value, ..., value]; //pre filled array

name[index] = value; //stored element

let ducks = ["Huey", "Dewey", "Louie"];

let stooges = []; // stooges.length e 0

stooges[0] = "Larry"; // stooges.length e 1

stooges[1] = "Moe"; // stooges.length e 2

stooges[4] = "Curly"; // stooges.length e 5

stooges[4] = "Shemp"; //stooges.length e 5

Visão geral
Vetores

• Principais métodos:

• concat, pop, push, reverse, shift, unshift, slice, sort, splice, toString

• Vetores funcionam como estrutura de dados

• Pilhas: push e pop, adicionam e removem respectivamente

• Fila: unshift e shift, adicionam e e removem respectivamente

30

let a = ["Stef", "Jason"]; //Stef, Jason

a.push("Brian"); //Stef, Jason, Brian

a.unshift("Kelly"); //Kelly, Stef, Jason, Brian

a.pop(); //Kelly, Stef, Jason

a.shift(); //Stef, Jason

a.sort(); // Jason, Stef

Visão geral
Vetores

• split

• Quebra a string em partes utilizando um delimitador

• Pode ser utilizado com expressões regulares

• join

Transforma um vetor em uma string, utilizando um delimitador entre os
elementos

31

let s = "the quick brown fox";

let a = s.split(" "); // ["the", "quick", "brown", "fox"]

a.reverse(); // ["fox", "brown", "quick", "the"]

s = a.join("!"); // "fox!brown!quick!the"

Visão geral
Estruturas de Repetição

• while

• do / while

• for

• for/in e for/of (ECMA 2015)

• break / continue

32

Visão geral
Estruturas de Repetição - while

• A condição é testada antes de iniciar a execução do bloco

33

while (condition) {

 code block to be executed

}

while (i < 10) {

 text += "The number is " + i;

 i++;

}

Visão geral
Estruturas de Repetição – do/while

• A condição é testada após a execução do bloco

• O laço é executado pelo menos uma vez

34

do {

 code block to be executed

}

while (condition);

do {

 text += "The number is " + i;

 i++;

}

while (i < 10);

Visão geral
Estruturas de Repetição – for

• Instrução 1 - Executada antes de iniciar o bloco

• Instrução 2 - Executadas antes de cada iteração do laço

• Instrução 3 - Executadas após a iteração do laço

35

for (instrução 1; instrução 2; instrução 3) {

 code block to be executed

}

for (i = 0; i < 10; i++) {

 if (i === 3) { break }

 text += "The number is " + i + "
";

}

Visão geral
Exceções

• try

• Obrigatória . Usada para delimitar o bloco de código que pode gerar a exceção

• catch

• O bloco interno é executado caso a exceção ocorra

• A cláusula interrompe a propagação do erro

• É possível acessar a exceção lançada

• finally

• É opcional. O seu bloco de código é SEMPRE executado

• Independentemente da exceção ser lançada

• Mesmo que o bloco try possua um return

36

Visão geral
Exceções

37

try {

 // Block of code to try

}

catch(err) {

 // Block of code to handle errors

}

finally {

 // Block of code to be executed regardless of the try / catch result

}

Objetos e
Funções

Objetos e Funções

39

• Em JavaScript funções são objetos, logo possuem propriedades e métodos

• Métodos: apply() e call()

• Propriedades: length e constructor

• Funções são first-class citizen. Podem ser:

• usada como um valor qualquer

• armazenadas em vetores, variáveis e objetos

• passadas como argumentos para outras funções

• retornadas por outras funções

Funções em JS

Objetos e Funções
Exemplo

40

function exemplo(a, b){

 return a * b;

}

exemplo.length // 2

exemplo.constructor // Function()

const square = function(number) { return number * number }

let x = square(4) // x -> 16

Declaração

Notação literal - Function expression

c/ função anônima

Objetos e Funções
Passagem de parâmetros

• É possível passar qualquer quantidade de parâmetro para qualquer função

• Não resulta em erro

• Os parâmetros são armazenados em uma estrutura similar a um vetor
chamada de arguments

• A propriedade length de uma função armazena a quantidade de parâmetros
da função

41

Objetos e Funções
O objeto argumento

42

let x = soma(1, 123, 500, 115, 44, 88);

function soma() {

 let i, soma = 0;

 for (i = 0; i < arguments.length; i++) {

 soma += arguments[i];

 }

 return soma;

}

Permite acessar todos os argumentos

Objetos e Funções
Rest parameter - ECMA 6

43

let x = soma(1, 123, 500, 115, 44, 88);

function soma(...args) {

 let soma = 0;

 for (let arg of args) soma += arg;

 return soma;

}

let x = soma(4, 9, 16, 25, 29, 100, 66, 77);

Armazenas todos os argumentos em um vetor

Objetos e Funções
Valor default - ECMA 6

44

function soma(x, y = 10) {

 return x + y;

}

soma(5); //15 Valor atribuído ao argumento caso nenhum valor seja passado

Objetos e Funções
Auto-Invocação

• São outra aplicação para funções anônimas

• São chamadas imediatamente após a sua declaração

• Pode ser utilizada para realizar alguma tarefa sem criar variáveis globais

• Normalmente utilizada para tarefas de inicialização

45

(function () {

 let x = "Oi e Adeus"; // So e executado uma vez

})();

Objetos e Funções
Callback

46

var a = [

 'Hydrogen','Helium','Lithium','Beryllium'

];

var a2 = a.map(function(s) { return s.length; });

console.log(a2); // logs [8, 6, 7, 9]

Função enviada como argumento

Objetos e Funções
Arrow functions - ECMA 6

47

var a = [

 'Hydrogen','Helium','Lithium','Beryllium'

];

var a3 = a.map(s => s.length);

console.log(a3); // logs [8, 6, 7, 9]

function (a, b){

 return a + b + 100;

}

(a + b) => {

 return a + b;

}

let soma = (a + b) => a + b; Arrow function com uma única instrução

Arrow function com um único argumento

Arrow function com dois argumentos

Objetos e Funções
Funções Internas

• Funções internas tem acesso as variáveis do seu escopo e do seus parentes

48

function somaQuadrados(x, y){

 function elevaAoQuadrado(x){

 return x ** 2;

 }

 return elevaAoQuadrado(x) + elevaAoQuadrado(y);

}

Objetos e Funções
Clousures

49

var global = 100;

function externa() {

 var ext = 10;

 global++;

 function interna() {

 var inter = 20;

 console.log(`inter=${inter}, ext=${ext}, global=${global}`);

 ext++;

 global++;

 }

 return interna;

}

var X = externa();

var Y = externa();

X(); //inter=20, ext=10, global=102

X(); //inter=20, ext=11, global=103

X(); //inter=20, ext=12, global=104

Y(); //inter=20, ext=10, global=105

Escopo global
global = 100

Função externa
ext = 10

Função interna
inter = 20

Função

interna
ext = 10

inter = 20

global

X =
Função

interna
ext = 10

inter = 20

global

Y =

++

++

++

++

Objetos e Funções

• Simples pares nome-valor, como

• Dicionários em Python

• Hashes em Perl e Ruby

• Hash tables em C e C++

• HashMaps em Java

• Arrays associativos em PHP

• Muito comuns, estrutura de dados versátil

• Nome é uma string e o valor pode ser qualquer coisa
50

Objetos e Funções
Sintaxe Literal de Objetos

51

let pikachu = {

 nome: "Pikachu",

 especie: "Pikachu",

 nivel: 1,

 falar: function () {

 return `${this.nome} ${this.nome}`;

 }

};

Objetos e Funções
Criação de Objetos

• É possível criar objetos de duas formas

• Após a criação é possível adicionar métodos e atributos

• É possível acessar os atributos usando duas notações

• Dot notation

• Bracket notation

• É possível percorrer um objeto

• Podemos ainda usar funções construtoras
52

Objetos e Funções
Criação de Objetos

• É possível criar objetos de duas formas

• Após a criação é possível adicionar métodos e atributos

53

let pikachu = {

 nome: "Pikachu",

 especie: "Pikachu",

 nivel: 1,

 falar: function () {

 return `${this.nome} ${this.nome}`;

 }

}

let charmander = new Object();

charmander.nome = "Charmander";

charmander.falar = () => "chaarrr";

Objetos e Funções
Acessando atributos

• É possível acessar os atributos usando duas notações

• Dot notation

• Bracket notation

54

let pikachu = {

 nome: "Pikachu",

 …

}

let charmander = new Object();

charmander.nome = “Charmander”;

console.log(pikachu.nome);

console.log(charmander['nome']);

Objetos e Funções
Percorrendo um objeto

55

let pikachu = {

 nome: "Pikachu",

 nivel: 1,

}

for (let attr in pikachu) {

 console.log(`${attr} = ${pikachu[attr]}`);

}

for (let [attr, value] of Object.entries(pikachu)) {

 console.log(`${attr} = ${value}`);

}

for (let value of Object.values(pikachu)) {

 console.log(`${value}`);

}

Adicionados no ECMA 6

Objetos e Funções
Funções construtoras

56

function Pokemon(nome, especie, nivel=1) {

 this.nome = nome;

 this.especie = especie;

 this.nivel = nivel;

 this.falar = () => `${this.nome} ${this.nome}`;

}

let pikachu = new Pokemon("Pikachu", "Pikachu");

let charmander = new Pokemon("Charmander", “Charmander”, nivel=1)

Objetos e Funções
Classes - ECMA 6

• Nova sintaxe adicionada no ECMA 6

• JavaScript continua sendo baseada em prototype

• Facilita a implementação de herança

• Syntatic Sugar -> Parecido com outra linguagens

57

Objetos e Funções
Classes - ECMA 6

58

class Pokemon {

 constructor(nome, especie, nivel=1) {

 this.nome = nome;

 this.especie = especie;

 this.nivel = nivel;

 }

 falar = () => `${this.nome} ${this.nome}` ;

 get nivel() { return this._nivel}

 set nivel(valor) { this._nivel = valor > 0 ? valor : 1}

}

let pikachu = new Pokemon("Pikachu", "Pikachu", -1);

console.log(`${pikachu.falar()} ${pikachu.nivel}`); // pikachu pikachu 1

Referências

• https://blog.betrybe.com/javascript/

• https://developer.mozilla.org/pt-BR/docs/Web/JavaScript

• https://developer.mozilla.org/pt-BR/docs/Learn/JavaScript

• https://pt.wikipedia.org/wiki/JavaScript

• https://javascriptrefined.io/nan-and-typeof-36cd6e2a4e43

• https://www.toptal.com/javascript/es6-class-chaos-keeps-js-developer-up

59

https://blog.betrybe.com/javascript/
https://developer.mozilla.org/pt-BR/docs/Web/JavaScript
https://developer.mozilla.org/pt-BR/docs/Learn/JavaScript
https://pt.wikipedia.org/wiki/JavaScript
https://javascriptrefined.io/nan-and-typeof-36cd6e2a4e43
https://www.toptal.com/javascript/es6-class-chaos-keeps-js-developer-up

Por hoje é só

60

