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Introdução



Introdução
Motivação

• A interatividade em websites sempre atraiu a atenção de desenvolvedores 


• Com o desenvolvimento da Web 2.0, nos anos 2000, a interatividade e o engajamento do 
usuário passaram a receber um foco ainda maior


• Companhias como Twitter, Facebook, and YouTube foram criadas nesse período


• Desenvolvedores precisaram se adaptar para permitir esse novo nível de interatividade 


• Bibliotecas e framework foram lançadass para permitir a criação desses sites


• Em 2006, John Resig lançou o jQuery, que simplificou a escrita de JS no lado do cliente


• Com o passar do tempo, bibliotecas e frameworks focando no server side também 
surgiram
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Introdução
Motivação
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https://github.com/mraible/history-of-web-frameworks-timeline


Introdução
Motivação
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Introdução
MVC -> MVVM

• O suporte ao AJAX (2005) permitiu a atualização parcial de aplicações web


• Requisições a página completa deixaram de ser necessárias


• As atualizações passaram a ser mais rápidas


• No entanto, algum esforço duplicado era necessário com o espelhamento da lógica de 
apresentação e a lógica de negócio


• Por volta de 2010 os primeiros framework focados em MVVM surgiram


• Atualmente os frameworks mais utilizados utilizam a arquitetura MVVM
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Introdução
MVC -> MVVM

• MVVM (Model View ViewModel) é um padrão arquitetural baseado no MVC


• Foca em separar mais claramente a UI da lógica de negócio da aplicação 
(model)


• Diversas implementações desse padrão utilizam declarative data binding para  
separar o a implementação das Views de outra camadas


• Foi projetado para "remover" todo o código relacionado UI por meio do uso de 
data binding


• A ideia é obter ambas as vantagens da separação do desenvolvimento 
funcional fornecido pelo MVC, enquanto aproveita as vantagens do data binding
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Introdução
MVVM - Vantagens

• Facilita o desenvolvimento em paralelo da UI e de seus components


• Abstrai o funcionamento da View, reduzindo a quantidade da lógica de 
negócio na camada de View


• O ViewModel é mais fácil de ser testado com testes unitários se comparado 
com event-driven code


• O ViewModel pode ser testado sem preocupações com automatização da UI 
e interações


• Da um melhor suporte a aplicações reativas
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Introdução
Aplicações Reativas

• Não são um paradigma ou uma nova ideia


• Sua adoção no contexto web está intimamente ligada a framework JS como: Vue, 
React e Angular


• De forma simplificada podemos dizer que uma aplicação reativa:


• Observa as modificações do estado da aplicação


• Propaga/Notifica as mudanças em toda a aplicação


• Atualiza/Renderiza as views automaticamente em resposta a mudanças


• Forneça feedback oportuno para as interações do usuário
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Introdução ao VueJS
VueJs

• Comumente conhecido como Vue, pronunciado “view"


• Framework progressivo do JavaScript de código aberto (open source) para a 
construção de interfaces de usuário


• Projetado para ser adotado de forma incremental


• Também pode funcionar como uma estrutura de aplicativos web capaz de 
alimentar aplicativos avançados de uma única página


• Criado por Evan You depois de trabalhar para o Google no AngularJS
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Introdução
História - Timeline
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2013 2014 2015 2016 2020 2021

• Primeiro commit 
do projeto

• Primeira release, 
verão 0.9 ou 
Animatrix

• Versão 1.0, 
Evangelion, 
liberado

• Versão 2.0, Ghost 
in the shell, foi 
lançada

• Versão 3.2, 
Quintessential 
Quintuplets 
lançada

• Versão 3.0, 
One Piece, foi 
lançada

2023

• Versão 3.3, 
Rurouni 
Kenshin

• Atualmente se 
encontra na 
Versão 3.4, 
Slam Dunk



Introdução ao VueJS
Comunidade

14Fonte: https://survey.stackoverflow.co
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Introdução ao VueJS
Comunidade

15Fonte: https://tsh.io/state-of-frontend/#frameworks
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Introdução ao VueJS
Ecossistema
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Ecossistema 
Vue

Vue CLI Vue 
Router

Pinia

Vue 
Loader

Vue 
SSR

Vue 
Test Unit

Vue 
Dev  

Tools

Biblioteca de 
gerenciamento de estados 
baseada no padrão FLUX

O roteador oficial do Vue.Js 
Totalmente integrado ao core

Ferramenta para 
desenvolvimento e 

debugging para 
navegadores

Biblioteca oficial para a 
implementação de testes 

unitários

Loader para webpack que 
permite o uso de single file 

components

Sistema que garante que as 
diversas ferramentas de 

build funcionem abstraindo 
suas complexidades

Permite a criação de 
aplicações que usem Server 

Side Rendering



Introdução ao VueJS
Vantagens

• Leve


• Pouco mais de 18KB, consideravelmente menor que os concorrentes


• Performance e Virtual DOM


• Data binding reativo de duas mão (two way)


• Legibilidade


• Single File Components incentivam a separação em componentes com seu 
respectivos HTML, CSS e JS/TS
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Introdução ao VueJS
Vantagens

• Ecossistema bem estabelecido


• Flexível


• Documentação concisa e atualizada


• Suporte da comunidade


• Fácil de usar

18



Criando uma 
aplicação Vue



Criando uma aplicação Vue

20

const { createApp } = Vue 
const app = createApp({ 
  /* options */ 
}).mount('#app')

O pontapé inicial de toda aplicação em Vue é a 
criação de uma instância do objeto application

Uma aplicação precisa ser montando em um elemento da DOM

Recebe como primeiro parâmetro um objeto usado para 
configurar o componente raiz (root)



Criando uma aplicação Vue
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const { createApp } = Vue 
const RootComponent = {/* options */} 
createApp(RootComponent) 
.component(‘SearchInput', SearchInputComponent) 
.directive('focus', FocusDirective) 
.use(LocalePlugin) 
.mount('#app')

O componente raiz é o ponto inicial de 
renderização após a montagem da aplicação

A instância de application é utilizada para registrar 
elementos “globais” que podem ser usados por 
outros componentes da aplicação



Criando uma aplicação Vue

• Cada componente pode expor por meio do retorno da função setup


• Deve retornar um objeto


• Automaticamente são rastreados pelo sistema de reatividade do Vue

22

const { ref, createApp } = Vue 
const vm = createApp({ 
  setup() { 
    const count = ref(4) 
    return { count } 
  } 
}).mount('#app') 
console.log(vm.count) // -> 4



Criando uma aplicação Vue
Data binding, interpolação e Diretivas

• A forma mais simples de data binding é estabelecida usando um ‘bigode’ {{ }}


• Também chamada de interpolação


• Vincula o dado com o texto do elemento HTML


• Não é aplicável em atributos HTML, para isso diretivas são utilizadas
23

<span>Message: {{ count }}</span> const vm = createApp({ 
  setup() { 
    const count = ref(4) 
    return { count } 
  } 
}).mount('#app') 
vm.count++

Message: 5 4 



Diretivas



Diretivas

• Diretivas são atributos especiais começados com o prefixo v-


• Utilizadas para realizar a vinculação de atributos


• Tem como objetivo aplicar reativamente os efeitos colaterais da mudança 
dos valores de suas expressões na DOM
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<p v-if="seen">Now you see me</p>const vm = createApp({ 
  setup() { 
    const seen = ref(true) 
    return { seen } 
  } 
}).mount('#app') 
vm.seen = false

Now you see me 



Diretivas
Renderização condicional
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<h1 v-if="awesome">Vue is awesome!</h1> 
<h1 v-else>Oh no 😢</h1>

<template v-if="ok"> 
  <h1>Title</h1> 
  <p>Paragraph 1</p> 
  <p>Paragraph 2</p> 
</template>

<div v-if="type === 'A'"> 
  A 
</div> 
<div v-else-if="type === 'B'"> 
  B 
</div> 
<div v-else-if="type === 'C'"> 
  C 
</div> 
<div v-else> 
  Not A/B/C 
</div>



Diretivas
Renderização de listas
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createApp({ 
  setup() { 
    const items = ref([{ message: 'Foo' }, { message: 'Bar' }]) 
    return { items } 
  } 
}).mount('#app')

<ul> 
  <li v-for="item in items"> 
    {{ item.message }} 
  </li> 
</ul>



Diretivas
Renderização de listas
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<ul> 
  <li v-for="(item, index) in items"> 
   {{ index }} - {{ item.message }} 
  </li> 
</ul>

createApp({ 
  setup() { 
    const items = ref([{ message: 'Foo' }, { message: 'Bar' }]) 
    return { items } 
  } 
}).mount('#app')



Diretivas
Argumentos

• Alguma diretivas aceitam um argumento


• Após o nome da diretiva e um sinal de : 


• Por exemplo: v-bind é utilizado para atualizar de forma reativa um atributo 
HTML
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<a v-bind:href="url"> ... </a> 
<a v-on:click="doSomething"> ... </a> 
<a v-bind:[attributeName]="url"> ... </a>



Diretivas
Tratando eventos

30

<div id="basic-event"> 
  <button v-on:click=“counter += 1">Add 1</button> 
  <p>The button above has been clicked {{ counter }} times.</p> 
</div>

createApp({ 
  setup() { 
    const count = ref(0) 
    return { count } 
  } 
}).mount('#app')



Diretivas
Tratando eventos
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createApp({ 
  setup() { 
    const name = ref('Bruno') 
    function greet(event) { 
      alert('Hello ' + name.value + '!') 
      if (event) { alert(event.target.tagName) } 
    } 
    return { name, greet } 
  } 
}).mount('#app')

<div id="event-with-method"> 
  <button v-on:click=“greet”>Greet</button> 
</div>



Diretivas
Tratando eventos
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createApp({ 
  setup() { 
    function say(something) { 
      alert(something) 
    } 
    return { say } 
  } 
}).mount('#app')

<div id="inline-handler"> 
  <button v-on:click=“say(‘hi’)">Say hi</button> 
  <button v-on:click=“say(‘what')">Say what</button> 
</div>



Diretivas
Vinculação de classes (CSS)
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<div :class="{ active: isActive }"></div> 

<div 
  class="static" 
  :class="{  
           active: isActive, 
           'text-danger': hasError  
          }" 
></div>

createApp({ 
  setup() { 
    const isActive = ref(true) 
    const hasError = ref(false) 
    return { isActive, hasError } 
  } 
}).mount('#app')



Diretivas
Vinculação de classes (CSS)
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<div :class="[activeClass, errorClass]"></div>

createApp({ 
  setup() { 
    const activeClass = ref("active") 
    const errorClass = ref("danger") 
    return { activeClass, errorClass } 
  } 
}).mount('#app')



Diretivas
Vinculação de formulários

• Ao utilizamos formulários, frequentemente precisamos sincronizar o dados de 
entradas a elementos que JavaScript que representem esse estado


• Usando as diretivas básicas que vimos podemos fazer isso assim:


•  

• Ou simplesmente assim:
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<input 
  :value="text" 
  @input="event => text = event.target.value”>

<input v-model="text">



Diretivas
V-model

• A diretiva v-model é usada para criar two-way binding 


• Pode ser usadas com diferentes tipos de elementos de entrada


• Atualiza corretamente o elemento baseado no tipo de input 

• text e textarea usam a propriedade value e o evento input 

• checkbox e radio buttons usam a propriedade checked e o evento  
change 

• select usam a propriedade value e o evento  change 
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Diretivas
Vinculação de formulários: Input e Textarea
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<input v-model="message" placeholder="edit me" /> 
<p>Message is: {{ message }}</p>

<span>Multiline message is:</span> 
<p style="white-space: pre-line;">{{ message }}</p> 
<br> 
<textarea v-model="message" placeholder="add multiple lines"></textarea>



Diretivas
Vinculação de formulários: checkbox
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<input type="checkbox" id="checkbox" v-model="checked" /> 
<label for="checkbox">{{ checked }}</label>

<div id="v-model-multiple-checkboxes"> 
  <input type="checkbox" id="jack" value="Jack" v-model="checkedNames" /> 
  <label for="jack">Jack</label> 
  <input type="checkbox" id="john" value="John" v-model="checkedNames" /> 
  <label for="john">John</label> 
  <input type="checkbox" id="mike" value="Mike" v-model="checkedNames" /> 
<label for="mike">Mike</label> 

  <br> 
  <span>Checked names: {{ checkedNames }}</span> 
</div>



Diretivas
Vinculação de formulários: radiobutton
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<div id="v-model-radiobutton"> 
  <input type="radio" id="one" value="One" v-model="picked" /> 
  <label for="one">One</label> 
  <br /> 
  <input type="radio" id="two" value="Two" v-model="picked" /> 
  <label for="two">Two</label> 
  <br> 
  <span>Picked: {{ picked }}</span> 
</div>

createApp({ 
  setup() { 
    const picked = ref('') 
    return { picked } 
  } 
}).mount('#app')



Diretivas
Vinculação de formulários: select
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<div id=“v-model=select" class="demo"> 
  <select v-model="selected"> 
    <option disabled value="">Please select one</option> 
    <option>A</option> 
    <option>B</option> 
    <option>C</option> 
  </select> 
  <span>Selected: {{ selected }}</span> 
</div>

createApp({ 
  setup() { 
    const selected = ref('') 
    return { selected } 
  } 
}).mount('#app')



Diretivas
Atalhos
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<!-- full syntax --> 
<a v-bind:href="url"> ... </a> 
<!-- shorthand --> 
<a :href="url"> ... </a> 
<!-- shorthand with dynamic argument --> 
<a :[key]="url"> ... </a>

<!-- full syntax --> 
<a v-on:click="doSomething"> ... </a> 
<!-- shorthand --> 
<a @click="doSomething"> ... </a> 
<!-- shorthand with dynamic argument --> 
<a @[event]="doSomething"> ... </a>

Atalho para v-bind

Atalho para v-on



Principais aspectos 
de uma aplicação 
em VueJs



Principais aspectos de uma aplicação em VueJs
Data binding
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ViewModel

View
Model

DOM

Vue

Objetos JavaScript

DOM Listeners

Diretivas & 
Interpolação



Principais aspectos de uma aplicação em VueJs
Data binding
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Watcher
Component 

Render 
Function

Data

b

getter

setter

Trigger re-render

Coleta as  
dependências

Notifica

Render



Principais aspectos de uma aplicação em VueJs
Componentes
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Root Component

Header Component

Article Component Nav Component

Post Component

Post Component



Destruição da instância

Principais aspectos de uma aplicação em VueJs
Ciclo de Vida
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Laço de eventos

Template e criação da DOM 
virtual

Criação da instância Vue cria os observers de acordo com os dados do ViewModel e  inicializa 
eventos usados internamento no sistema de eventos

O template ou a função de renderização é localizada e o template é compilado. 
Uma cópia da virtual DOM é criada. A cópia resultante é montada no elemento 
HTML.

Os observers monitoram os dados do ViewModel. Quando algum dado muda, 
a virtual DOM é renderizadas novamente e então o HTML DOM é atualizada.

Todas os observers, event listeners e components filhos destruídos antes da 
destruição complete da aplicação



Principais aspectos de uma aplicação em VueJs
Ciclo de Vida
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Por hoje é só

50


