
Prof. Bruno Góis Mateus (brunomateus@ufc.br)

Fundamentos de Vue.js
QXD0279 - Desenvolvimento de Software para Web 2

mailto:brunomateus@ufc.br

Agenda

• Introdução

• Introdução ao VueJs

• Principais aspectos de uma aplicação em VueJs

• Diretivas

• Componentes

• Prática

2

Introdução

Introdução
Motivação

• A interatividade em websites sempre atraiu a atenção de desenvolvedores

• Com o desenvolvimento da Web 2.0, nos anos 2000, a interatividade e o engajamento do
usuário passaram a receber um foco ainda maior

• Companhias como Twitter, Facebook, and YouTube foram criadas nesse período

• Desenvolvedores precisaram se adaptar para permitir esse novo nível de interatividade

• Bibliotecas e framework foram lançadass para permitir a criação desses sites

• Em 2006, John Resig lançou o jQuery, que simplificou a escrita de JS no lado do cliente

• Com o passar do tempo, bibliotecas e frameworks focando no server side também
surgiram

4

Introdução
Motivação

5

https://github.com/mraible/history-of-web-frameworks-timeline

Introdução
Motivação

6

Introdução
MVC -> MVVM

• O suporte ao AJAX (2005) permitiu a atualização parcial de aplicações web

• Requisições a página completa deixaram de ser necessárias

• As atualizações passaram a ser mais rápidas

• No entanto, algum esforço duplicado era necessário com o espelhamento da lógica de
apresentação e a lógica de negócio

• Por volta de 2010 os primeiros framework focados em MVVM surgiram

• Atualmente os frameworks mais utilizados utilizam a arquitetura MVVM

7

*

Introdução
MVC -> MVVM

• MVVM (Model View ViewModel) é um padrão arquitetural baseado no MVC

• Foca em separar mais claramente a UI da lógica de negócio da aplicação
(model)

• Diversas implementações desse padrão utilizam declarative data binding para
separar o a implementação das Views de outra camadas

• Foi projetado para "remover" todo o código relacionado UI por meio do uso de
data binding

• A ideia é obter ambas as vantagens da separação do desenvolvimento
funcional fornecido pelo MVC, enquanto aproveita as vantagens do data binding

8

Introdução
MVVM - Vantagens

• Facilita o desenvolvimento em paralelo da UI e de seus components

• Abstrai o funcionamento da View, reduzindo a quantidade da lógica de
negócio na camada de View

• O ViewModel é mais fácil de ser testado com testes unitários se comparado
com event-driven code

• O ViewModel pode ser testado sem preocupações com automatização da UI
e interações

• Da um melhor suporte a aplicações reativas

9

Introdução
Aplicações Reativas

• Não são um paradigma ou uma nova ideia

• Sua adoção no contexto web está intimamente ligada a framework JS como: Vue,
React e Angular

• De forma simplificada podemos dizer que uma aplicação reativa:

• Observa as modificações do estado da aplicação

• Propaga/Notifica as mudanças em toda a aplicação

• Atualiza/Renderiza as views automaticamente em resposta a mudanças

• Forneça feedback oportuno para as interações do usuário
10

Introdução ao
VueJS

Introdução ao VueJS
VueJs

• Comumente conhecido como Vue, pronunciado “view"

• Framework progressivo do JavaScript de código aberto (open source) para a
construção de interfaces de usuário

• Projetado para ser adotado de forma incremental

• Também pode funcionar como uma estrutura de aplicativos web capaz de
alimentar aplicativos avançados de uma única página

• Criado por Evan You depois de trabalhar para o Google no AngularJS

12

Introdução
História - Timeline

13

2013 2014 2015 2016 2020 2021

• Primeiro commit
do projeto

• Primeira release,
verão 0.9 ou
Animatrix

• Versão 1.0,
Evangelion,
liberado

• Versão 2.0, Ghost
in the shell, foi
lançada

• Versão 3.2,
Quintessential
Quintuplets
lançada

• Versão 3.0,
One Piece, foi
lançada

2023

• Versão 3.3,
Rurouni
Kenshin

• Atualmente se
encontra na
Versão 3.4,
Slam Dunk

Introdução ao VueJS
Comunidade

14Fonte: https://survey.stackoverflow.co

Ad
oç

ão

0%

12,5%

25%

37,5%

50%

2023 2024 2025

21,3%
19,1%18,86%

15,6%14,2%13,5%

7,4%6,6%5,8%

20,3%
18,2%19,51%

49,1%

40,7%42,7%

Node Express Nest Spring Boot
ASP.NET Core

https://survey.stackoverflow.co

Introdução ao VueJS
Comunidade

15Fonte: https://tsh.io/state-of-frontend/#frameworks

Quais frameworks você utilizou no último
ano e gostou?

0%

17,5%

35%

52,5%

70%

Rea
ct

Vu
e.j

s
Sve

lte

Ang
ula

r

Prea
ct

HTM
X

7%9,7%

22,1%
25,8%

44,8%

69,9%
Qual framework você usou e não gostou?

0%

4%

8%

12%

16%

Rea
ct

Ang
ula

r
Vu

e.j
s

Prea
ct

Sve
lte

HTM
X

2,5%
3,5%3,6%

8,6%

12,8%

15,4%

https://tsh.io/state-of-frontend/

Introdução ao VueJS
Ecossistema

16

Ecossistema
Vue

Vue CLI Vue
Router

Pinia

Vue
Loader

Vue
SSR

Vue
Test Unit

Vue
Dev

Tools

Biblioteca de
gerenciamento de estados
baseada no padrão FLUX

O roteador oficial do Vue.Js 
Totalmente integrado ao core

Ferramenta para
desenvolvimento e

debugging para
navegadores

Biblioteca oficial para a
implementação de testes

unitários

Loader para webpack que
permite o uso de single file

components

Sistema que garante que as
diversas ferramentas de

build funcionem abstraindo
suas complexidades

Permite a criação de
aplicações que usem Server

Side Rendering

Introdução ao VueJS
Vantagens

• Leve

• Pouco mais de 18KB, consideravelmente menor que os concorrentes

• Performance e Virtual DOM

• Data binding reativo de duas mão (two way)

• Legibilidade

• Single File Components incentivam a separação em componentes com seu
respectivos HTML, CSS e JS/TS

17

Introdução ao VueJS
Vantagens

• Ecossistema bem estabelecido

• Flexível

• Documentação concisa e atualizada

• Suporte da comunidade

• Fácil de usar

18

Criando uma
aplicação Vue

Criando uma aplicação Vue

20

const { createApp } = Vue
const app = createApp({
 /* options */
}).mount('#app')

O pontapé inicial de toda aplicação em Vue é a
criação de uma instância do objeto application

Uma aplicação precisa ser montando em um elemento da DOM

Recebe como primeiro parâmetro um objeto usado para
configurar o componente raiz (root)

Criando uma aplicação Vue

21

const { createApp } = Vue
const RootComponent = {/* options */}
createApp(RootComponent)
.component(‘SearchInput', SearchInputComponent)
.directive('focus', FocusDirective)
.use(LocalePlugin)
.mount('#app')

O componente raiz é o ponto inicial de
renderização após a montagem da aplicação

A instância de application é utilizada para registrar
elementos “globais” que podem ser usados por
outros componentes da aplicação

Criando uma aplicação Vue

• Cada componente pode expor por meio do retorno da função setup

• Deve retornar um objeto

• Automaticamente são rastreados pelo sistema de reatividade do Vue

22

const { ref, createApp } = Vue
const vm = createApp({
 setup() {
 const count = ref(4)
 return { count }
 }
}).mount('#app')
console.log(vm.count) // -> 4

Criando uma aplicação Vue
Data binding, interpolação e Diretivas

• A forma mais simples de data binding é estabelecida usando um ‘bigode’ {{ }}

• Também chamada de interpolação

• Vincula o dado com o texto do elemento HTML

• Não é aplicável em atributos HTML, para isso diretivas são utilizadas
23

Message: {{ count }} const vm = createApp({
 setup() {
 const count = ref(4)
 return { count }
 }
}).mount('#app')
vm.count++

Message: 5 4

Diretivas

Diretivas

• Diretivas são atributos especiais começados com o prefixo v-

• Utilizadas para realizar a vinculação de atributos

• Tem como objetivo aplicar reativamente os efeitos colaterais da mudança
dos valores de suas expressões na DOM

25

<p v-if="seen">Now you see me</p>const vm = createApp({
 setup() {
 const seen = ref(true)
 return { seen }
 }
}).mount('#app')
vm.seen = false

Now you see me

Diretivas
Renderização condicional

26

<h1 v-if="awesome">Vue is awesome!</h1>
<h1 v-else>Oh no 😢</h1>

<template v-if="ok">
 <h1>Title</h1>
 <p>Paragraph 1</p>
 <p>Paragraph 2</p>
</template>

<div v-if="type === 'A'">
 A
</div>
<div v-else-if="type === 'B'">
 B
</div>
<div v-else-if="type === 'C'">
 C
</div>
<div v-else>
 Not A/B/C
</div>

Diretivas
Renderização de listas

27

createApp({
 setup() {
 const items = ref([{ message: 'Foo' }, { message: 'Bar' }])
 return { items }
 }
}).mount('#app')

 <li v-for="item in items">
 {{ item.message }}

Diretivas
Renderização de listas

28

 <li v-for="(item, index) in items">
 {{ index }} - {{ item.message }}

createApp({
 setup() {
 const items = ref([{ message: 'Foo' }, { message: 'Bar' }])
 return { items }
 }
}).mount('#app')

Diretivas
Argumentos

• Alguma diretivas aceitam um argumento

• Após o nome da diretiva e um sinal de :

• Por exemplo: v-bind é utilizado para atualizar de forma reativa um atributo
HTML

29

<a v-bind:href="url"> ...
<a v-on:click="doSomething"> ...
<a v-bind:[attributeName]="url"> ...

Diretivas
Tratando eventos

30

<div id="basic-event">
 <button v-on:click=“counter += 1">Add 1</button>
 <p>The button above has been clicked {{ counter }} times.</p>
</div>

createApp({
 setup() {
 const count = ref(0)
 return { count }
 }
}).mount('#app')

Diretivas
Tratando eventos

31

createApp({
 setup() {
 const name = ref('Bruno')
 function greet(event) {
 alert('Hello ' + name.value + '!')
 if (event) { alert(event.target.tagName) }
 }
 return { name, greet }
 }
}).mount('#app')

<div id="event-with-method">
 <button v-on:click=“greet”>Greet</button>
</div>

Diretivas
Tratando eventos

32

createApp({
 setup() {
 function say(something) {
 alert(something)
 }
 return { say }
 }
}).mount('#app')

<div id="inline-handler">
 <button v-on:click=“say(‘hi’)">Say hi</button>
 <button v-on:click=“say(‘what')">Say what</button>
</div>

Diretivas
Vinculação de classes (CSS)

33

<div :class="{ active: isActive }"></div>

<div
 class="static"
 :class="{
 active: isActive,
 'text-danger': hasError
 }"
></div>

createApp({
 setup() {
 const isActive = ref(true)
 const hasError = ref(false)
 return { isActive, hasError }
 }
}).mount('#app')

Diretivas
Vinculação de classes (CSS)

34

<div :class="[activeClass, errorClass]"></div>

createApp({
 setup() {
 const activeClass = ref("active")
 const errorClass = ref("danger")
 return { activeClass, errorClass }
 }
}).mount('#app')

Diretivas
Vinculação de formulários

• Ao utilizamos formulários, frequentemente precisamos sincronizar o dados de
entradas a elementos que JavaScript que representem esse estado

• Usando as diretivas básicas que vimos podemos fazer isso assim:

•  

• Ou simplesmente assim:

35

<input
 :value="text"
 @input="event => text = event.target.value”>

<input v-model="text">

Diretivas
V-model

• A diretiva v-model é usada para criar two-way binding

• Pode ser usadas com diferentes tipos de elementos de entrada

• Atualiza corretamente o elemento baseado no tipo de input

• text e textarea usam a propriedade value e o evento input

• checkbox e radio buttons usam a propriedade checked e o evento
change

• select usam a propriedade value e o evento change

36

Diretivas
Vinculação de formulários: Input e Textarea

37

<input v-model="message" placeholder="edit me" />
<p>Message is: {{ message }}</p>

Multiline message is:
<p style="white-space: pre-line;">{{ message }}</p>

<textarea v-model="message" placeholder="add multiple lines"></textarea>

Diretivas
Vinculação de formulários: checkbox

38

<input type="checkbox" id="checkbox" v-model="checked" />
<label for="checkbox">{{ checked }}</label>

<div id="v-model-multiple-checkboxes">
 <input type="checkbox" id="jack" value="Jack" v-model="checkedNames" />
 <label for="jack">Jack</label>
 <input type="checkbox" id="john" value="John" v-model="checkedNames" />
 <label for="john">John</label>
 <input type="checkbox" id="mike" value="Mike" v-model="checkedNames" />
<label for="mike">Mike</label>

 Checked names: {{ checkedNames }}
</div>

Diretivas
Vinculação de formulários: radiobutton

39

<div id="v-model-radiobutton">
 <input type="radio" id="one" value="One" v-model="picked" />
 <label for="one">One</label>

 <input type="radio" id="two" value="Two" v-model="picked" />
 <label for="two">Two</label>

 Picked: {{ picked }}
</div>

createApp({
 setup() {
 const picked = ref('')
 return { picked }
 }
}).mount('#app')

Diretivas
Vinculação de formulários: select

40

<div id=“v-model=select" class="demo">
 <select v-model="selected">
 <option disabled value="">Please select one</option>
 <option>A</option>
 <option>B</option>
 <option>C</option>
 </select>
 Selected: {{ selected }}
</div>

createApp({
 setup() {
 const selected = ref('')
 return { selected }
 }
}).mount('#app')

Diretivas
Atalhos

41

<!-- full syntax -->
<a v-bind:href="url"> ...
<!-- shorthand -->
<a :href="url"> ...
<!-- shorthand with dynamic argument -->
<a :[key]="url"> ...

<!-- full syntax -->
<a v-on:click="doSomething"> ...
<!-- shorthand -->
<a @click="doSomething"> ...
<!-- shorthand with dynamic argument -->
<a @[event]="doSomething"> ...

Atalho para v-bind

Atalho para v-on

Principais aspectos
de uma aplicação
em VueJs

Principais aspectos de uma aplicação em VueJs
Data binding

43

ViewModel

View
Model

DOM

Vue

Objetos JavaScript

DOM Listeners

Diretivas &
Interpolação

Principais aspectos de uma aplicação em VueJs
Data binding

44

Watcher
Component

Render
Function

Data

b

getter

setter

Trigger re-render

Coleta as
dependências

Notifica

Render

Principais aspectos de uma aplicação em VueJs
Componentes

45

Root Component

Header Component

Article Component Nav Component

Post Component

Post Component

Destruição da instância

Principais aspectos de uma aplicação em VueJs
Ciclo de Vida

46

Laço de eventos

Template e criação da DOM
virtual

Criação da instância Vue cria os observers de acordo com os dados do ViewModel e inicializa
eventos usados internamento no sistema de eventos

O template ou a função de renderização é localizada e o template é compilado.
Uma cópia da virtual DOM é criada. A cópia resultante é montada no elemento
HTML.

Os observers monitoram os dados do ViewModel. Quando algum dado muda,
a virtual DOM é renderizadas novamente e então o HTML DOM é atualizada.

Todas os observers, event listeners e components filhos destruídos antes da
destruição complete da aplicação

Principais aspectos de uma aplicação em VueJs
Ciclo de Vida

47

Referências

• Vue.js in Action por Eric Hanchett com Benjamin Listwon

• Fullstack Vue: The Complete Guide to Vue.js por Hassan
Djirdeh, Nate Murray e Ari Lerner

• A brief history of web development

• FrontEnd Chronology

• Vue Presentation

• Understanding MVVM - A guide for JavaScript developers

48

https://devdojo.com/tnylea/a-brief-history-of-web-development
https://frontend-chronology.netlify.app
https://robinck.github.io/vue-presentation/
https://addyosmani.com/blog/understanding-mvvm-a-guide-for-javascript-developers/

Referências

• MVVM - Learning JavaScript Design Patterns [Book]

• Vue.js : Documentação oficial

• The ultimate guid to Javascript frameworks

• JavaScript Technical Interview Question: is React a MVC or MVVM?

• VueJs OverView

49

https://www.oreilly.com/library/view/learning-javascript-design/9781449334840/ch10s06.html
https://vuejs.org/
https://jsreport.io/the-ultimate-guide-to-javascript-frameworks/
https://medium.com/developers-tomorrow/javascript-interview-question-is-react-an-mvc-or-mvvm-ac2ea2a5127d
https://www.tutorialspoint.com/vuejs/vuejs_overview.htm

Por hoje é só

50

