& UNIVERSIDADE
i:W®s) FEDERAL DO CEARA

S VNITA FO5 .
g€ CAMPUS QUIXADA

Criando uma app SPA c/ Vue.js

QXDO0279 - Desenvolvimento de Software para Web 2

Prof. Bruno Gois Mateus (brunomateus@ufc.br)

mailto:brunomateus@ufc.br

Agenda

* |Introducao

» Single File Components
* Introducao ao Pinia

* Introducao ao VueRouter

 Migrando nossa Manga Store

Introducao

Introducao

. Aplicacdes Desenvolvedores

» Devem ter o melhor desempenho possivel ¢ Querem codigos faceis de

- | escrever e confortaveis de ler
 Codigo compacto e conciso

. Compativeis com o maior nimero de Desejam usar as funcionalidades
navegadores mais modernas de JS

e Nao necessariamente os mais novos

Introducao

* Desenvolvedores Js criaram solugcoes para contornar tais contradicoes

gy griey N

Veglz = N

* Além disso outras ferramentas foram incorporadas ao desenvolvendo em JS

ESLint

Introducao
Webpack

* O problema da dependéncias em Js
« O HTML nao possui uma solucao ideal para o problema
e Colisao de nomes de variaveis globais
 Ordem de carregamento
« Otimizacoes de desempenho (ex, carregamento assincrono)
e Solucao: o Sistema de Modulo (module system)

* No entanto, nem todos os navegadores dao suporte

Introducao
Webpack

 Bundling
O Webpack do arquivo de entrada (apps.|s)
* Analisa as outras dependéncias recursivamente
» Gera um arquivo Js unico compativel com navegador
* |oaders
* Permite a transformacao de qualquer arquivo antes do empacotamento
« Babel Loader, . Sass Loader,

 Hot module reloading

Introducao
Webpack

« Configurar o Webpack é uma atividade complicada

 Em geral, os desenvolvedores precisam das mesmas configuracoes basicas

@ o)
« @ :

my-v
@ Plugins PS B serve Compll
A

bbbbb
[3 configuration o)
Dashboard pen
BT @ lint
a Success 0 0

1.9MB (pars: 645.2kB (pars: 610.4kB 94

IIIIIIII

EEEEEEE

Introducao
Vue CLI

 Ferramenta padrao de desenvolvimento usando Vue.|s
« Simplifica a conversao de codigo
 Esconde as complexidades do Webpack
 Usa Babel e TypeScript
e Torna o processo de desenvolvimento mais eficiente através do hot-swapping

* \Webpack transpila o cddigo e realizar o hot-swapping a cada mudanca

Introducao
Vite

Criado por Evan You Nao é baseado no WebPack

\ //O projeto ndo é construido

durante o desenvolvimento.
O tempo de startup e
compilacao € reduzido.

Baseado no sistema de
modulos do ECMAG.
Nao realiza transpilacao.

Compativel com outra \
framework como React e

/Em producdo, Vite utiliza o

Rollup.js para empacotar o
projeto

Svelte

10

Introducao
Vite

Bundle based dev server

Server
ready

Introducao
Vite

Native ESM based dev server

entry &

ready

HTTP request ///////(fopllis L
Server : i s :

o

12

Introducao ao VuedJS
Ecossistema

Vue
Dev

Tools Ecossistema

Vue

Loader

13

Single File Components

Single File Components
Single File Components - SFC

 Formato especial que permite o encapsulamento do template (), logica
(J5) e estilo () de um componente Vue em um unico arquivo ()

e Sao um formato especifico do Vue que

 Em geral, nos projetos o
build como e

em Js e CSS

sao integrados a ferramentas de

15

Single File Components

Motivos para usar SFC

* Permite a criacao de componentes modularizados usando linguagem
familiares: HTML, CSS e JavaScript

* Template sao prée-compilados

e CSS com escopo

e Sintaxe facilitada quando usado em conjunto com a Composition API
 Suporte das IDEs: Auto-complete e checagem de tipos

e Suporte ao Hot-Module Replacement

16

Single File Components

<template>
seu HTML
</template>

<script>
Seu JS
</script>

<style>
seu CSS
</style>

17

Single File Components

<template>

« Cada arqguivo vue pode conter um bloco

* O conteudo do bloco € extraido e passado para o

* Prée-processadores

e Aceita codigo escrito em

no mais alto nivel

18

https://pugjs.org/api/getting-started.html

Single File Components

<Sscript>

« Cada arquivo vue pode conter no maximo um bloco
 Pode ser usado em conjunto com

 E executado como um mddulo ES

* O export default deve ser:

 Um componente Vue no formato option object

 Um objeto plano

* Retorno da chamada a funcao defineComponent

19

Single File Components

<style>

« Cada arquivo vue pode conter varios blocos <style>

 Podem possuir atributos como scoped ou mddulo que ajudam a escapular o
estilo no component ao qual ele pertence

* Prée-processadores

o E possivel utilizar SASS

20

https://sass-lang.com/

Single File Components

<temp late>
<div class="example">{{ msg }}</div>
</template>

<script>
import { ref } from 'vue'
export default {
setup() {
const msg = ref('Hello world!")
return { msg }

}
}

</script>

<style>
.example {
color: red;

}
</style>

21

Single File Components

22

Single File Components

<script setup> - Composition API

« Cada arquivo vue pode conter apenas um bloco <script setup>

 Permite que desenvolvedores definam componentes sem a necessidade do
bloco export

e Basta definir suas variaveis e usa-las no template

e Codigo € executado uma vez para cada instancia do componente

23

Single File Components
Migracao da Option API para Composition API

<template>

<div>Hello, {{ name }}!</div>
<input v-model="name" />

<button :disabled="!1sNamePresent"” @click="submitName"'">Submit</button>

</template> <script>
| import { ref, computed } from 'vue'
<script>
export default 1 export default
data() { ° ¢

setup() {
return.{” S
y nName: const isNamePresent |= computed(() => name.value.length > 0)

Ay
iémputed- { function submitName() {
isNameﬁresent() { - console. log(name.value)
return this.name. length > 0 ;
1 } return {
methods: { name,
submitName() { isNamePresent,
console. log(this.name) submitName
}
} }
} }

</script> </script>

24

Single File Components
Migracao da Option API para Composition API

<template>

<div>Hello, {{ name }}!</div>

<input v-model="name" />

<button :disabled="!1sNamePresent" @click="submitName">Submit</button>
</template>

<script> <script setup>
exportckﬁaqiE;i________________———————“”____—______—> 1mpor ref, computed } from 'vue'
setup() {

const name = ref("')——m———ov———_______, const name = ref('')
const isNamePresent =———7m—/ —7m70 __ __ const 1sNamePresent =

computed(() => name.value.length > 0)

function submitName() { - | |
console. log(name.value) function submitName() {

} console. log(name.value)
I3
return { </script>
name,
1sNamePresent,
submitName
}

}
¥

</script>

25

Single File Components
Migracao da Option API para Composition API

<temp late>

<div>Hello, {{ name }}'</div>

<input v-model="name" />

<button :disabled="!1isNamePresent" @click="submitName">Submit</button>
</template>

<script setup>
import { ref, computed } from 'vue'

const name = ref('"')
const isNamePresent = computed(() => name.value.length > 0)

function submitName() {
console. log(name.value)
}

</script>

26

Single File Components

* Assim como outros framewoks modernos, Vue permite que os usuarios
criem componentes isolados em suas aplicacoes

e Sao importantes dentre outros motivos por favorecer a ea

e Sao auto-contidos agrupando HTML, JS e CSS

* Facilitando a manutencao especialmente quando a aplicacao escala

27

Single File Components

Props: Passando dados para um componente filho

 Permite o envio de dados aos components filhos

e S3o0 atributos customizaveis registrados por um componente
* Dever ser explicitamente declarados no componente filho
 Um valor deve ser dado pelo componente pai/mae

e Sao , sempre no sentido

28

Single File Components

Passando dados para um componente filho

const app

= createlApp ({ V<div>
setup () {

g <blog-post

const posts = ref (| £ 0 R tg"
{ 1d: 1, title: "My journey with Vue' 1}, YT LQET T POR ln POSLS
{ id: 2, title: 'Blogging with Vue' }, ri : key="post.1d"

{ id: 3, title: 'Why Vue is so fun' } :title="post.title"

></blog-post>

in</div> o

J "I' ST TTTT T TTIT

nthin them. This éllows fFr easier

1)

return { posts }

J
})

app . component ('blog-post', | 3 grow much larger in scale.

props: ['title'],

template: “<h4>{{ title }}</h4>" lication. ASE”WIWEU%WWRHW“ the

11 1\ 1T GAWNY Wi Wil MrJrJ 11 1\ WVV W Uerul WA GW Wi ILItIeS

b
Blogging with Vue

Why Vue is so fun

29

Single File Components
defineModel - Vue 3.4

 Em algumas situacoes precisamos atualizar o componente pai, a cada
atualizacao de um prop do componente filho

« A partir do Vue 3.4, a maneira recomendada é a seguinte:

<script setup>
const model = defineModel () <Child v-model="countModel" />

function update () {
model .value++

}
</script>

<template>
<div>Parent bound v-model is: {{ model }}</div>
<button @click="update">Increment</button>
</template> 30

Single File Components
defineModel - Vue 3.4

» E possivel adicionar argumentos ao v-model associado ao defineModel

<script setup>
const title = defineModel ('title')
</script> —

<template>
<input type="text" v-model="title" />
</template>

<!-- Parent.vue —-->
<Child v—-model:title=“bookTitle” />

31

Single File Components

Escutando eventos do componentes filhos

 Em diversas situacoes é necessario que haja comunicacao entre filho e pai
 Essa comunicacao é feita por meio de eventos customizados

e Sao iniciados quando um componente executa a instrucao

 Um componente que esta escutando pelo é evento € notificado na
instrucao

 Dados podem ser enviados

32

Single File Components

Escutando eventos do componentes filhos

const app = createApp ({ <div :style="{ fontSize: fontSize +
setup () { <blog-post v-for="post in posts"
const posts = ref (]| - kev="post . 1d"
{ 1d: 1, title: 'My journey with Vue' },) .y Eiv) , o
{ 1d: 2, title: 'Blogging with Vue' 1}, :title="post.title

{ 1id: 3, title: 'Why Vue 1is so fun' } denlarge-text="fontSize += 0.1"

1) ></blog-post>
const postFontSize = ref (1) </div>

return { posts, fontSize <

}
})

app.component ('blog-post', {

props: ['title'],
emits: ['enlargeText'],
template:

<div class="blog-post">
<h4>{{ title }}</h4d>
<button (@click="S$emit ('enlargeText') ">
Enlarge text
</button>
</div>

'em'

}">

33

Single File Components

Escutando eventos do componentes filhos

const app = createlApp ({ <div :Style="{ fontSize: fontSize + 'em' }">
setup () { o <blog-post v-for="post in posts"
const posts = ref (| W g
{ id: 1, title: 'My journey with Vue' 1}, : key="post.1d
4 { 1d: 2, title: 'Blogging with Vue' 1}, :title="post.title" @

{ 2d: 3, title: '"Why Vue 1s so fun' } — -
1 denlarge-text=['onEnlargeText
const fontSize = ref (1.0 ></blog—post>
function onEnlargeText (enlargeAmount)] { :

</div>

fontSize.value += Number (enlargeAmount)

}

return { posts, fontSize, onEnlargeText }

}

})
é emitido com o valor

. Ao clicar no botao o evento

app.component ('blog-post', {
como argumento

props: ['title'],
emits: ['enlargeText'], 1 . O evento € tratado no blog-post
template: o A '
<div class="blog-post"> O, valor , €0 receblqlq
<h4>{{ title }}</h4> . 0 metodo do e invocado
<putton|@click="Semit ('enlargeText', 0,1)"> 4. A propriedade do componente pai € atualizada
Enlarge text " A : A j
< ot 5. O style do div € atualizado como consequéncia
</div>

. Valor enviado 34

Single File Components
Slots

* Assim com elemento HTML, algumas vezes ¢é util passar o conteudo para o
componente da seguinte forma

<alert-box>
Content.
</alert-box>

e |sto pode ser feito ao utilizar o elemento

35

Single File Components

Distribuicao de componentes com slots

app.component ('todo-button' , { <todo-button>
template: Add todo
<button class="btn-primary"> </todo-button>
<slot></slot>
</button> <todo-button>
) <i class="fas fa-plus"></i>
}) Add todo

</todo-button>

<todo-button>

<font-awesome-icon name="plus"></font-
awesome—-1con>

Add todo
</todo-button>

36

Single File Components

Distribuicao de componentes com slots

app.component ('todo-button', {
template:
<button class="btn-primary">
<slot></slot>
</button>"

})

<todo-button>
Delete a {{ item }}
</todo-button>

Slots nao tem acesso a dados do componente filho

-- =

Parent Component

Data

{ item: 'First Item'

<todo-button>
Delete
</todo-button>

TodoButton

A}

37

Introducao ao Vue router

Introducao ao Vue router

Vue Router

 Roteador oficial do Vue.ds
* Criado pelo autor do Vue, Evan You

* Ajuda na atualizacao da view em SPA (Single page application)

39

Introducao ao Vue router

Principais funcionalidades

« Mapeamento de rotas aninhadas

* Roteamento dinamico

* Configuracao modular baseada em componentes
* Rotas com parametros, query, wildcards

* Efeito de transicao entre Views

* Ajuste fino do controle de navegacao

» Diferentes modos de historico de navegacao

 Comportamento de rolagem customizavel

40

Introducao ao Vue router

Demonstracao

Banans

41

Introducao ao Vue router

<div 1d="app"'>
<hl>Hello App!'!</hl>
<p>

<router-link to="/">

Go to Home
</router-link>

<router-link to="/about">

Go to About
</router-link>

</p>

const routes = |

path: */, [component: Home |},
_—__— {path: */abouty; [component: About]},
] //

const router = VueRouter.createRouter({
history:
VueRouter.createWebHashHistory(),
routes, // short for "routes: routes’

})

const app = Vue.createApp({})

<router-view></router-view>

</d1iv>

app.use(router)

app.mount('#app')

42

Introducao ao Vue router

Roteamento dinamico

const routes = [
// dynamic segments start with a colon

{ path: '/users/:id', component: User },

]

<script setup>
import |1 useRoute j|from 'vue-router'

const route = useRoute()

const 1d = route.params.id
</script>

43

Introducao ao Vue router

Roteamento dinamico

Padrao da URL matched path $route.params
/users/:username /users/eduardo {
username: 'eduardo’
}
/users/:username/posts/:postld /users/eduardo/posts/123 {
username: 'eduardo’,
postId: '123°

}

44

Introducao ao Vue router

Roteamento dinamico - Named routes

const routes = |

{
path: '/user/:username',
name: ‘'user’,
component: User

}

]

<router-link :to="{ name:
User
</router-link>

'user', params: { username:

'erina’

}}II>

45

Introducao ao Vue router

Navegacao programatica

import { useRouter } from 'vue-router'
const router = useRouter()
router.push('/users/eduardo"')

router.push({ path: '/users/eduardo' })

router.push({ name: 'user', params: { username: 'maria' } })

router.push({ path: '/register', query: {1 plan:
router.push({ path: '/about', hash: '#team' })
router.push({ path: '/home', replace: true })

router.replace({ path: '/home' })

'private' } })

/register?plan=private

/users/maria

/users/eduardo

46

Introducao ao Vue router

Redirect e Alias

const routes

const routes

CcConst routes

| { path:
| { path:

| { path:

'/home', redirect: '/' }]

'"/home', redirect: { name: 'homepage' }

'/'", component: Homepage, alias:

' /home!

b]
b]

47

Introducao ao Vue router

Navigation Guards

* Pontos de interferéncia fornecidos pelo Vue router para customizacao do
processo de navegacao

 Em geral, utilizado para redirecionar ou cancelar uma rota
* Existem 3 opcoes de “guardas”

e Globais: e
e Por rota:

« Em componentes: e

48

Introducao ao Vue router

Navigation Guards

Is Yes

component - =

: reused ? :
y - beforeRouteUpdate
|
\ 4 \ 4
beforeRoutelLeave beforecEach | @@= | |e e cececcccceeam- beforeEnter

Resolve async
route components

............ p| beforeRouterEnter
afterEach
e > beforeResolve

i
i
Galicalibacks i — DOM : Navigation confirmed
beforeRountEnter guards updates J

Navigation Triggered

49

Introducao ao Vue router

beforeEach

router.beforeEach(async (to, from) => {
// canUserAccess() returns “true' or “false’
const canAccess = awalit canUserAccess(to)
if (!canAccess) return '/login'

})

50

Introducao ao Vue router

beforeResolve

router.beforeResolve(async to => {
if (to.meta.requiresCamera) {

try {
await askForCameraPermission()

} catch (error) {
if (error instanceof NotAllowedError) {

return false

} else {
throw error

51

Introducao ao Vue router

afterEach

router.afterEach((to, from) => {
sendToAnalytics(to.fullPath)

})

52

Introducao ao Vue router

beforeEnter

const routes = [
{
path: '/users/:1id',
component: UserDetails,
beforeEnter: (to, from) => {
// reject the navigation
return false

I

53

Introducao ao Vue router

beforeEnter

function removeQueryParams(to) {
if (Object.keys(to.query).length)
return { path: to.path, query: {}, hash: to.hash }
I3

function removeHash(to) {

if (to.hash) return { path: to.path, query: to.query, hash:
}

const routes = [
{
path: '/users/:1d',component: UserDetails,
beforeEnter: [removeQueryParams, removeHash],

I
{

path: '/about', component: UserDetails,
beforeEnter: [removeQueryParams],
}
]

}

54

Introducao ao Vue router

Em componentes

onBeforeRouteUpdate((to, from) => {
this.name = to.params.name

})

onBeforeRoutelLeave((to, from) => {
const answer = window.confirm('Do you really want to leave? you have unsaved changes!')
if (!'answer) return false

})

55

Introducao ao Vue router
Data fetching

* Existem duas opcoes para busca/recuperacao dados (data fetching)
* ApOS a navegacao
1. A navegacao é realizada
2. O componente é renderizado

3. Os dados sao recuperados nos hooks () do componente

* Antes da navegacao

* Os dados sao recuperados antes ()

* A navegacao € realizada

56

Introducao ao Vue router

Antes da navegacao

‘beforeRouteEnter((to, from, next)) => {
getPost(to.params.id, (err, post) => {
next(vm => vm.setData(err, post))

})
}

beforeRouteUpdate(async(to, from)) =>
this.post = null
try {
this.post = await getPost(to.params.id)
} catch (error) A
this.error = error.toString()

}
}

57

Introducao ao Vue router

ApoOs a navegacao

<template>
<div class="post">
<div v-1if="loading" class="loading">Loading...</div>

<div v-if="error" class="error">{{ error }}</div>

<div v-1f="post" class="content">
<h2>{{ post.title }}</h2>
<p>{{ post.body }}</p>
</div>
</d1iv>
</template>

* Os dados sao recuperados antes ()

* A navegacao € realizada

58

Introducao ao Vue router
Ecossistema

Vue
Dev

Tools Ecossistema

Vue

Vue
Router

Vue
Loader

59

Introducao ao Pinia

Introducao ao Pinia

Motivacao

* Imagine que voce desenvolveu uma aplicacao de chat
* Lista de usuario, chat privados, historico de conversas

* Barra de notificacao que informa sobre mensagens nao
lidas enviadas por outros usuarios

* Milhdoes de usuarios usam sua aplicacao todos os dias

 Reclamacao: vez por outra a barra de navegacao mostra
notificacoes falsas

Mensagens

g Aang
J L4

e Luffy

8B,
N
)

m Inuyasha
!

M Edward Elric
Ll

)
L ’3
L,
|

61

Introducao ao Pinia

Motivacao

Mensagens

* A situacao anterior “zombie notification” foi enfrentada
pelo desenvolvedores do Facebook a alguns anos atras

14 A . ~
Quando multiplos componentes de uma aplicacao

compartilham os mesmos dados, a complexidade das

interconexoes irao aumentar ate que nao seja mais possivel m
prever ou entender o estado dos dados. Consequentemente, |

a aplicacao se torna impossivel de estender ou manter.”

* A solucao do problema serviu de inspiracao para a criagcao
de um padrao arquitetural

62

Introducao ao Pinia

Flux

 E um padrdo arquitetural e ndo um biblioteca

e Conjunto de principios que descrevem um arquitetura escalavel para frontend

* Aplicavel em qualquer aplicacao complexa Oo

* Implementacoes
S

63

Introducao ao Pinia
Principios do FLUX - Single Source of Truth

* Este local unico € chamado de
« Componentes devem
« Componentes podem ter dados locais que apenas eles devem conhecer

 EX: A posicao de uma barra de navegacao em um componente de lista

64

Introducao ao Pinia
Principios do FLUX - Data is read-only

« Componentes podem ler os dados da livremente, no entanto, eles nao
podem alterar os dados contidos na

 Componentes informam a intencao de alterar algum dado

e A realizar essas mudancas ()

65

Introducao ao Pinia

Principios do FLUX - Mutations are synchronous

. sS40 sincronas garantem que o estado dos dados nao dependem
de um sequéncia e do tempo de execucao de eventos imprevisiveis

66

Introducao ao Pinia

Pinia

* Biblioteca que facilita a implementacao da arquitetura Flux
o State Management Pattern + library

* Armazena os dados de forma centralizada garantindo que os estados sO
podem ser mudados de uma forma previsivel

* |niciou como um experimento de redesign do Vuex 5 usando a composition
AP]

e Prover uma API

 Baseada em trés conceitos principais: , e

67

Introducao ao Pinia

Vantages de usar o Pinia

* Devtools support
* Rastrei acoes e mutacoes
* Viagem no tempo e debug facilitado
 Hot module replacement
« E possivel modificar as stores sem recarregar a pagina
* Plugins
e Suporte a TypeScript e autocompletion em JS

* Server Side Rendering suport

68

Introducao ao Pinia

Backend API .

Dispatch E Commit

Componentes Vue ik < -- >

Render E Mutate

69

Introducao ao Pinia

Core concepts - Store

 E uma entidade que armazena o estado e as ldgica de negdcios que nio
estao ligadas com a arvore de componentes

 Armazena o estado global da aplicacao

 Podemos trata-la como um componente que esta sempre presente

70

Introducao ao Pinia

Quando usar Stores?
e Stores devem conter que devem ser

« Dados usados em varios locais (Ex: Informacoes do usuario “logado”)

 Dados que precisam ser preservados independente da navegacao

e A visibilidade de um elemento do componente

/1

Introducao ao Pinia

Core concepts - State

* E parte central das stores
* Pinia permite o uso de varias stores independentes (
* Single source of truth

* Evita o compartilhamento dos dados com todos os componentes

(2

Introducao ao Pinia

Criando uma Store

import { createPinia } from 'pinia‘'

app.use(createPinial))

import { defineStore } from 'pinia'

export const useCounterStore = defineStore('counter’,
const count = ref(0)
return { count }

})

<script setup>

import { counterStore } from '@/stores/counter'’

const myCounter = useCounterStore()
myCounter.count++
</script>

() => A

/3

Introducao ao Pinia

Core concepts - Getters

* Algumas vezes precisamos de um estado derivado do estado da store
e S30 o0 equivalente ao sO que aplicados a

e Precisam ser

74

Introducao ao Pinia

Core concepts - Getters

import { ref, computed } from 'vue' c<script setup>
export const taskStorex= defineStore('main', () ==~ const store = taskStore()
{ </script>
const todos = ref(] r
{ id: 1, text: '...', done: true }, ztemplate>
{ id: 2, text: '...', done: false } ,: <p>
I #Done {1 store.doneTasksCount }}
</p>

const doneTasks = computed(() =>

todos.value.filter(todo => todo.done)) </template>

const doneTasksCount = computed(() =>
doneTodos.value. length)

return { doneTasks, doneTasksCount }

})

73

Introducao ao Pinia

Core concepts - Actions

* AcoOes sao o equivalente aos métodos porem aplicados em stores
e Diferentemente de getters, podem ser assincronas

» Perfeitas para definir l0gicas de negdcios

/6

Introducao ao Pinia

Core concepts - Action

export const useCounterStore = <script setup>
defineStore('main', () => { const store = useStore()
store = store.randomizeCounter()
const counter = ref(0) </script>

function increment() {
return counter.value++

}

function randomizeCounter() {
counter.value = Math.round(100 *
Math. random())

}

return { randomizeCounter }

})

Introducao ao Pinia

Estrutura de uma aplicacao

index.html
—— maln. s
—— api
L ... # abstractions for making API requests
—— components
App.vue

—— sStores
—— USEer.js
—— maln. s

/8

Introducao ao Pinia
Ecossistema

Vue
Dev
Tools

Ecossistema

Vue

Loader

79

Referencias

. Why Vue CLI?

e Jargon-Free Webpack Intro For VuedS Users

* |Introducing Vite: A Better Vue CLI?
 Has Vite Made Vue CLI Obsolete?

* Vue 3.2 - Using Composition APl with Script Setup

« WTF is Vuex? A Beginner's Guide To Vuex 4

 Complex Vue 3 state management made easy with Pinia

e https://next.router.vuejs.org

80

https://vuejsdevelopers.com/topics/vue-cli/
https://vuejsdevelopers.com/2017/12/04/webpack-intro-vue-js/
https://www.codemag.com/Article/2109071/Introducing-Vite-A-Better-Vue-CLI
https://vuejsdevelopers.com/2020/12/07/vite-vue-cli/
https://www.thisdot.co/blog/vue-3-2-using-composition-api-with-script-setup
https://vuejsdevelopers.com/2017/05/15/vue-js-what-is-vuex/
https://blog.logrocket.com/complex-vue-3-state-management-pinia/
https://next.router.vuejs.org

Por hoje e soO

