
Prof. Bruno Góis Mateus (brunomateus@ufc.br)

Criando uma app SPA c/ Vue.js
QXD0279 - Desenvolvimento de Software para Web 2

mailto:brunomateus@ufc.br

Agenda

• Introdução

• Single File Components

• Introdução ao Pinia

• Introdução ao VueRouter

• Migrando nossa Manga Store

2

Introdução

Introdução

• Aplicações

• Devem ter o melhor desempenho possível

• Código compacto e conciso

• Compatíveis com o maior número de
navegadores

• Não necessariamente os mais novos
4

• Desenvolvedores

• Querem códigos fáceis de
escrever e confortáveis de ler

• Desejam usar as funcionalidades
mais modernas de JS

Introdução

• Desenvolvedores Js criaram soluções para contornar tais contradições

• Além disso outras ferramentas foram incorporadas ao desenvolvendo em JS

5

ESLint

Introdução
Webpack

• O problema da dependências em Js

• O HTML não possui uma solução ideal para o problema

• Colisão de nomes de variáveis globais

• Ordem de carregamento

• Otimizações de desempenho (ex, carregamento assíncrono)

• Solução: o Sistema de Módulo (module system)

• No entanto, nem todos os navegadores dão suporte
6

Introdução
Webpack

• Bundling

• O Webpack analisa as dependências do arquivo de entrada (apps.js)

• Analisa as outras dependências recursivamente

• Gera um arquivo Js único compatível com “qualquer” navegador

• Loaders

• Permite a transformação de qualquer arquivo antes do empacotamento

• Babel Loader, Vue Loader, Sass Loader, TypeScript Loader

• Hot module reloading
7

Introdução
Webpack

• Configurar o Webpack é uma atividade complicada

• Em geral, os desenvolvedores precisam das mesmas configurações básicas

8

Introdução
Vue CLI

• Ferramenta padrão de desenvolvimento usando Vue.js

• Simplifica a conversão de código

• Esconde as complexidades do Webpack

• Usa Babel e TypeScript

• Torna o processo de desenvolvimento mais eficiente através do hot-swapping

• Webpack transpila o código e realizar o hot-swapping a cada mudança

9

Introdução
Vite

10

Criado por Evan You

Baseado no sistema de
módulos do ECMA6.

Não realiza transpilação.

Não é baseado no WebPack

O projeto não é construído
durante o desenvolvimento.
O tempo de startup e
compilação é reduzido.

Compatível com outra
framework como React e
Svelte

Em produção, Vite utiliza o
Rollup.js para empacotar o
projeto

Introdução
Vite

11

Introdução
Vite

12

Introdução ao VueJS
Ecossistema

13

Ecossistema
Vue

Vue CLI

Vue
Loader

Vue
Dev

Tools

Single File Components

Single File Components
Single File Components - SFC

• Formato especial que permite o encapsulamento do template (HTML), lógica
(JS) e estilo (CSS) de um componente Vue em um único arquivo (.vue)

• São um formato específico do Vue que precisa ser compilado em Js e CSS

• Em geral, nos projetos o compilador de SFC são integrados a ferramentas de
build como Vue CLI e Vite

15

Single File Components
Motivos para usar SFC

• Permite a criação de componentes modularizados usando linguagem
familiares: HTML, CSS e JavaScript

• Template são pré-compilados

• CSS com escopo

• Sintaxe facilitada quando usado em conjunto com a Composition API

• Suporte das IDEs: Auto-complete e checagem de tipos

• Suporte ao Hot-Module Replacement

16

Single File Components

17

<template>
 Seu HTML
</template>

<script>
 Seu JS
</script>

<style>
 Seu CSS
</style>

Single File Components
<template>

• Cada arquivo vue pode conter um bloco <template> no mais alto nível

• O conteúdo do bloco é extraído e passado para o @vue/compiler-dom

• Pré-processadores

• Aceita código escrito em Pug

18

https://pugjs.org/api/getting-started.html

Single File Components
<script>

• Cada arquivo vue pode conter no máximo um bloco <script>

• Pode ser usado em conjunto com <script setup>

• É executado como um módulo ES

• O export default deve ser:

• Um componente Vue no formato option object

• Um objeto plano

• Retorno da chamada a função defineComponent
19

Single File Components
<style>

• Cada arquivo vue pode conter vários blocos <style>

• Podem possuir atributos como scoped ou módulo que ajudam a escapular o
estilo no component ao qual ele pertence

• Pré-processadores

• É possível utilizar SASS

20

https://sass-lang.com/

Single File Components

21

<template>
 <div class="example">{{ msg }}</div>
</template>

<script>
import { ref } from 'vue'
export default {
 setup() {
 const msg = ref('Hello world!')
 return { msg }
 }
}
</script>

<style>
.example {
 color: red;
}
</style>

Single File Components

22

Single File Components
<script setup> - Composition API

• Cada arquivo vue pode conter apenas um bloco <script setup>

• Permite que desenvolvedores definam componentes sem a necessidade do
bloco export

• Basta definir suas variáveis e usá-las no template

• Código é executado uma vez para cada instância do componente

23

Single File Components
Migração da Option API para Composition API

24

<template>
 <div>Hello, {{ name }}!</div>
 <input v-model="name" />
 <button :disabled="!isNamePresent" @click="submitName">Submit</button>
</template>

<script>
export default {
 data() {
 return {
 name: ''
 }
 },
 computed: {
 isNamePresent() {
 return this.name.length > 0
 }
 },
 methods: {
 submitName() {
 console.log(this.name)
 }
 }
}
</script>

<script>
import { ref, computed } from 'vue'

export default {
 setup() {
 const name = ref('')
 const isNamePresent = computed(() => name.value.length > 0)

 function submitName() {
 console.log(name.value)
 }

 return {
 name,
 isNamePresent,
 submitName
 }
 }
}
</script>

Single File Components
Migração da Option API para Composition API

25

<template>
 <div>Hello, {{ name }}!</div>
 <input v-model="name" />
 <button :disabled="!isNamePresent" @click="submitName">Submit</button>
</template>

<script>
export default {
 setup() {
 const name = ref('')
 const isNamePresent =
computed(() => name.value.length > 0)

 function submitName() {
 console.log(name.value)
 }

 return {
 name,
 isNamePresent,
 submitName
 }
 }
}
</script>

<script setup>
import { ref, computed } from 'vue'

const name = ref('')
const isNamePresent =
computed(() => name.value.length > 0)

function submitName() {
 console.log(name.value)
}
</script>

Single File Components
Migração da Option API para Composition API

26

<template>
 <div>Hello, {{ name }}!</div>
 <input v-model="name" />
 <button :disabled="!isNamePresent" @click="submitName">Submit</button>
</template>

<script setup>
import { ref, computed } from 'vue'

const name = ref('')
const isNamePresent = computed(() => name.value.length > 0)

function submitName() {
 console.log(name.value)
}
</script>

Single File Components

• Assim como outros framewoks modernos, Vue permite que os usuários
criem componentes isolados em suas aplicações

• São importantes dentre outros motivos por favorecer a reusabilidade e a
manutenabilidade

• São auto-contidos agrupando HTML, JS e CSS

• Facilitando a manutenção especialmente quando a aplicação escala

27

Single File Components
Props: Passando dados para um componente filho

• Permite o envio de dados aos components filhos

• São atributos customizáveis registrados por um componente

• Dever ser explicitamente declarados no componente filho

• Um valor deve ser dado pelo componente pai/mãe

• São unidirecionais, sempre no sentido pai/mãe -> filho

28

Single File Components
Passando dados para um componente filho

• Assim como outros framewoks modernos, Vue permite que usuário criem
componentes isolados em suas aplicações

• São importantes dentre outros motivos por favorecer a reusabilidade e a
manutenabilidade

• Components are intended to be self-contained modules since we can group markup
(HTML), logic (JS) and even styles (CSS) within them. This allows for easier
maintenance, especially when applications grow much larger in scale.

• Let’s create a new component for our application. As a result, we’ll break apart the
interface of our app into two separate entities:

•
29

const app = createApp({
 setup() {
 const posts = ref([
 { id: 1, title: 'My journey with Vue' },
 { id: 2, title: 'Blogging with Vue' },
 { id: 3, title: 'Why Vue is so fun' }
])
 return { posts }
 }
})

app.component('blog-post', {
 props: ['title'],
 template: `<h4>{{ title }}</h4>`
})

<div>
 <blog-post
 v-for="post in posts"
 :key="post.id"
 :title="post.title"
 ></blog-post>
</div>

My journey with Vue
Blogging with Vue
Why Vue is so fun

Single File Components
defineModel - Vue 3.4

• Em algumas situações precisamos atualizar o componente pai, a cada
atualização de um prop do componente filho

• A partir do Vue 3.4, a maneira recomendada é a seguinte:

30

<script setup>
const model = defineModel()

function update() {
 model.value++
}
</script>

<template>
 <div>Parent bound v-model is: {{ model }}</div>
 <button @click="update">Increment</button>
</template>

<!-- Parent.vue -->
<Child v-model="countModel" />

Single File Components
defineModel - Vue 3.4

• É possível adicionar argumentos ao v-model associado ao defineModel

31

<script setup>
const title = defineModel('title')
</script>

<template>
 <input type="text" v-model="title" />
</template>

<!-- Parent.vue -->
<Child v-model:title=“bookTitle” />

Single File Components
Escutando eventos do componentes filhos

• Em diversas situações é necessário que haja comunicação entre filho e pai

• Essa comunicação é feita por meio de eventos customizados

• São iniciados quando um componente executa a instrução $emit(‘nome do
evento’)

• Um componente que está escutando pelo é evento é notificado na
instrução $on(‘nome do evento’)

• Dados podem ser enviados

32

Single File Components
Escutando eventos do componentes filhos

33

const app = createApp({
 setup() {
 const posts = ref([
 { id: 1, title: 'My journey with Vue' },
 { id: 2, title: 'Blogging with Vue' },
 { id: 3, title: 'Why Vue is so fun' }
])
 const postFontSize = ref(1)
 return { posts, fontSize }
 }
})

app.component('blog-post', {
 props: ['title'],
 emits: ['enlargeText'],
 template: `
 <div class="blog-post">
 <h4>{{ title }}</h4>
 <button @click="$emit('enlargeText')">
 Enlarge text
 </button>
 </div>
 `
})

<div :style="{ fontSize: fontSize + 'em' }">
 <blog-post v-for="post in posts"
 :key="post.id"
 :title="post.title"
 @enlarge-text="fontSize += 0.1"
 ></blog-post>
</div>

Single File Components
Escutando eventos do componentes filhos

34

const app = createApp({
 setup() {
 const posts = ref([
 { id: 1, title: 'My journey with Vue' },
 { id: 2, title: 'Blogging with Vue' },
 { id: 3, title: 'Why Vue is so fun' }
])
 const fontSize = ref(1.0)
 function onEnlargeText(enlargeAmount) {
 fontSize.value += Number(enlargeAmount)
 }
 return { posts, fontSize, onEnlargeText }
 }
})

app.component('blog-post', {
 props: ['title'],
 emits: ['enlargeText'],
 template: `
 <div class="blog-post">
 <h4>{{ title }}</h4>
 <button @click="$emit('enlargeText', 0.1)">
 Enlarge text
 </button>
 </div>
`})

<div :style="{ fontSize: fontSize + 'em' }">
<blog-post v-for="post in posts"
:key=“post.id"
:title="post.title"
@enlarge-text="onEnlargeText"

></blog-post>
 </div>

Valor enviado

1. Ao clicar no botão o evento enlargeText é emitido com o valor 0.1
como argumento

2. O evento é tratado no blog-post

• O valor 0.1, é o valor do parâmetro recebido

3. o método onEnlargeText do componente pai é invocado

4. A propriedade do componente pai é atualizada

5. O style do div é atualizado como consequência

1

2

3

4

5

Single File Components
Slots

• Assim com elemento HTML, algumas vezes é útil passar o conteúdo para o
componente da seguinte forma

• Isto pode ser feito ao utilizar o elemento <slot>

35

<alert-box>
 Content.
</alert-box>

Nome do componente
Conteúdo

Single File Components
Distribuição de componentes com slots

36

app.component('todo-button' , {
 template: `
 <button class="btn-primary">
 <slot></slot>
 </button>
 `
})

<todo-button>
 Add todo
</todo-button>

<todo-button>
 <i class="fas fa-plus"></i>
 Add todo
</todo-button>

<todo-button>
 <font-awesome-icon name="plus"></font-
awesome-icon>
 Add todo
</todo-button>

Outro componente

Single File Components
Distribuição de componentes com slots

37

app.component('todo-button', {
 template:`

<button class="btn-primary">
<slot></slot>

</button>`
})

<todo-button>
 Delete a {{ item }}
</todo-button>

Slots não tem acesso a dados do componente filho

Introdução ao Vue router

Introdução ao Vue router
Vue Router

• Roteador oficial do Vue.Js

• Criado pelo autor do Vue, Evan You

• Ajuda na atualização da view em SPA (Single page application)

39

Introdução ao Vue router
Principais funcionalidades

• Mapeamento de rotas aninhadas

• Roteamento dinâmico

• Configuração modular baseada em componentes

• Rotas com parâmetros, query, wildcards

• Efeito de transição entre Views

• Ajuste fino do controle de navegação

• Diferentes modos de histórico de navegação

• Comportamento de rolagem customizável
40

Introdução ao Vue router
Demonstração

41

Introdução ao Vue router

42

<div id="app">
 <h1>Hello App!</h1>
 <p>
 <router-link to="/">
 Go to Home
 </router-link>
 <router-link to="/about">
 Go to About
 </router-link>
 </p>
 <router-view></router-view>
</div>

const routes = [
 { path: '/', component: Home },
 { path: '/about', component: About },
]

const router = VueRouter.createRouter({
 history:
VueRouter.createWebHashHistory(),
 routes, // short for `routes: routes`
})

const app = Vue.createApp({})

app.use(router)

app.mount('#app')Utilizado para criar um link. Substitui a tag <a>

Local onde o componente associado a
rota será renderizado

<script setup>
import { useRoute } from 'vue-router'

const route = useRoute()

const id = route.params.id
</script>

Introdução ao Vue router
Roteamento dinâmico

43

const routes = [
 // dynamic segments start with a colon
 { path: '/users/:id', component: User },
]

Introdução ao Vue router
Roteamento dinâmico

44

Padrão da URL matched path $route.params
/users/:username /users/eduardo {

 username: 'eduardo'
}

/users/:username/posts/:postId /users/eduardo/posts/123 {
 username: 'eduardo',
 postId: '123'
}

Introdução ao Vue router
Roteamento dinâmico - Named routes

45

const routes = [
 {
 path: '/user/:username',
 name: 'user',
 component: User
 }
]

<router-link :to="{ name: 'user', params: { username: 'erina' }}">
 User
</router-link>

import { useRouter } from 'vue-router'

const router = useRouter()

router.push('/users/eduardo')

router.push({ path: '/users/eduardo' })

router.push({ name: 'user', params: { username: 'maria' } })

router.push({ path: '/register', query: { plan: 'private' } })

router.push({ path: '/about', hash: '#team' })

router.push({ path: '/home', replace: true })

router.replace({ path: '/home' })

Introdução ao Vue router
Navegação programática

46
/users/eduardo

/users/maria

/register?plan=private

/about#team/home

const routes = [{ path: '/home', redirect: '/' }]

Introdução ao Vue router
Redirect e Alias

47

const routes = [{ path: '/', component: Homepage, alias: '/home' }]

const routes = [{ path: '/home', redirect: { name: 'homepage' } }]

Introdução ao Vue router
Navigation Guards

• Pontos de interferência fornecidos pelo Vue router para customização do
processo de navegação

• Em geral, utilizado para redirecionar ou cancelar uma rota

• Existem 3 opções de “guardas”

• Globais: beforeEach, beforeResolve e afterEach

• Por rota: beforeEnter

• Em componentes: beforeRouteEnter, beforeRouteUpdate e
beforeRouteLeave

48

Introdução ao Vue router
Navigation Guards

49

Navigation Triggered

Resolve async
route components

Navigation confirmedCall callbacks in
beforeRountEnter guards

beforeRouteLeave

Is
component

reused ?

beforeEach

beforeRouteUpdate

beforeEnter

beforeRouterEnter

DOM
updates

afterEach

beforeResolve

Yes

No

router.beforeEach(async (to, from) => {
 // canUserAccess() returns `true` or `false`
 const canAccess = await canUserAccess(to)
 if (!canAccess) return '/login'
})

Introdução ao Vue router
beforeEach

50

router.beforeResolve(async to => {
 if (to.meta.requiresCamera) {
 try {
 await askForCameraPermission()
 } catch (error) {
 if (error instanceof NotAllowedError) {
 return false
 } else {
 throw error
 }
 }
 }
})

Introdução ao Vue router
beforeResolve

51

router.afterEach((to, from) => {
 sendToAnalytics(to.fullPath)
})

Introdução ao Vue router
afterEach

52

const routes = [
 {
 path: '/users/:id',
 component: UserDetails,
 beforeEnter: (to, from) => {
 // reject the navigation
 return false
 },
 },
]

Introdução ao Vue router
beforeEnter

53

function removeQueryParams(to) {
 if (Object.keys(to.query).length)
 return { path: to.path, query: {}, hash: to.hash }
}
function removeHash(to) {
 if (to.hash) return { path: to.path, query: to.query, hash: '' }
}
const routes = [
 {
 path: '/users/:id',component: UserDetails,
 beforeEnter: [removeQueryParams, removeHash],
 },
 {
 path: '/about',component: UserDetails,
 beforeEnter: [removeQueryParams],
 },
]

Introdução ao Vue router
beforeEnter

54

onBeforeRouteUpdate((to, from) => {
 this.name = to.params.name
})

onBeforeRouteLeave((to, from) => {
 const answer = window.confirm('Do you really want to leave? you have unsaved changes!')
 if (!answer) return false
})

Introdução ao Vue router
Em componentes

55

Introdução ao Vue router
Data fetching

• Existem duas opções para busca/recuperação dados (data fetching)

• Após a navegação

1. A navegação é realizada

2. O componente é renderizado

3. Os dados são recuperados nos hooks (created) do componente

• Antes da navegação

• Os dados são recuperados antes (beforeRouteEnter)

• A navegação é realizada

56

Introdução ao Vue router
Antes da navegação

• Existem duas opções para busca/recuperação dados (data fetching)

• Após a navegação

1. A navegação é realizada

2. O componente é renderizado

3. Os dados são recuperados nos hooks (created) do componente

• Antes da navegação

• Os dados são recuperados antes (beforeRouteEnter)

• A navegação é realizada

57

beforeRouteEnter((to, from, next)) => {
 getPost(to.params.id, (err, post) => {
 next(vm => vm.setData(err, post))
 })
}

beforeRouteUpdate(async(to, from)) =>
 this.post = null
 try {
 this.post = await getPost(to.params.id)
 } catch (error) {
 this.error = error.toString()
 }
}

Introdução ao Vue router
Após a navegação

• Existem duas opções para busca/recuperação dados (data fetching)

• Após a navegação

1. A navegação é realizada

2. O componente é renderizado

3. Os dados são recuperados nos hooks (created) do componente

• Antes da navegação

• Os dados são recuperados antes (beforeRouteEnter)

• A navegação é realizada

58

<template>
 <div class="post">
 <div v-if="loading" class="loading">Loading...</div>

 <div v-if="error" class="error">{{ error }}</div>

 <div v-if="post" class="content">
 <h2>{{ post.title }}</h2>
 <p>{{ post.body }}</p>
 </div>
 </div>
</template>

Introdução ao Vue router
Ecossistema

59

Ecossistema
Vue

Vue CLI

Vue
Loader

Vue
Dev

Tools

Vue
Router

Introdução ao Pinia

Goku
Lorem ipsum

12:43

Introdução ao Pinia
Motivação

• Imagine que você desenvolveu uma aplicação de chat

• Lista de usuário, chat privados, histórico de conversas

• Barra de notificação que informa sobre mensagens não
lidas enviadas por outros usuários

• Milhões de usuários usam sua aplicação todos os dias

• Reclamação: vez por outra a barra de navegação mostra
notificações falsas

61

Jonathan Perry
Lorem ipsum

12:43

Edward Elric
Lorem ipsum

12:43

+

2

Aang
Lorem ipsum

12:43

Luffy
Lorem ipsum

12:43

Inuyasha
Lorem ipsum

12:43

Mensagens

2

8

3

Introdução ao Pinia
Motivação

• A situação anterior “zombie notification” foi enfrentada
pelo desenvolvedores do Facebook a alguns anos atrás

• A solução do problema serviu de inspiração para a criação
de um padrão arquitetural

62

Goku
Lorem ipsum

12:43

Jonathan Perry
Lorem ipsum

12:43

Edward Elric
Lorem ipsum

12:43

+

2

Aang
Lorem ipsum

12:43

Luffy
Lorem ipsum

12:43

Inuyasha
Lorem ipsum

12:43

Mensagens

2

8

3

“Quando múltiplos componentes de uma aplicação
compartilham os mesmos dados, a complexidade das
interconexões irão aumentar até que não seja mais possível
prever ou entender o estado dos dados. Consequentemente,
a aplicação se torna impossível de estender ou manter.”

Introdução ao Pinia
Flux

• É um padrão arquitetural e não um biblioteca

• Conjunto de princípios que descrevem um arquitetura escalável para frontend

• Aplicável em qualquer aplicação complexa

• Implementações

63

Introdução ao Pinia
Princípios do FLUX - Single Source of Truth

• Qualquer dado compartilhado entre componentes, devem ser mantidos em
um único local, separado dos componentes que o utilizam

• Este local único é chamado de store

• Componentes devem ler dados da store

• Componentes podem ter dados locais que apenas eles devem conhecer

• Ex: A posição de uma barra de navegação em um componente de lista

64

Introdução ao Pinia
Princípios do FLUX - Data is read-only

• Componentes podem ler os dados da store livremente, no entanto, eles não
podem alterar os dados contidos na store

• Componentes informam a intenção de alterar algum dado

• A store realizar essas mudanças (mutations)

65

Introdução ao Pinia
Princípios do FLUX - Mutations are synchronous

• Mutations são síncronas garantem que o estado dos dados não dependem
de um sequência e do tempo de execução de eventos imprevisíveis

66

Introdução ao Pinia
Pinia

• Biblioteca que facilita a implementação da arquitetura Flux

• State Management Pattern + library

• Armazena os dados de forma centralizada garantindo que os estados só
podem ser mudados de uma forma previsível

• Iniciou como um experimento de redesign do Vuex 5 usando a composition
API

• Prover uma API mais simples comparada com o Vuex

• Baseada em três conceitos principais: state, getters e actions
67

Introdução ao Pinia
Vantages de usar o Pinia

• Devtools support

• Rastrei ações e mutações

• Viagem no tempo e debug facilitado

• Hot module replacement

• É possível modificar as stores sem recarregar a página

• Plugins

• Suporte a TypeScript e autocompletion em JS

• Server Side Rendering suport
68

Introdução ao Pinia

69

Backend API

DevtoolsComponentes Vue

Actions

Mutations

State

CommitDispatch

MutateRender

Introdução ao Pinia
Core concepts - Store

• É uma entidade que armazena o estado e as lógica de negócios que não
estão ligadas com a árvore de componentes

• Armazena o estado global da aplicação

• Podemos tratá-la como um componente que está sempre presente

70

Introdução ao Pinia
Quando usar Stores?

• Stores devem conter informações que devem ser acessadas em toda parte
da aplicação

• Dados usados em vários locais (Ex: Informações do usuário “logado”)

• Dados que precisam ser preservados independente da navegação

• Deve se evitar o armazenamento de dados que poderiam estar em um
componente

• A visibilidade de um elemento do componente

71

Introdução ao Pinia
Core concepts - State

• É parte central das stores

• Pinia permite o uso de várias stores independentes (single state tree)

• Single source of truth

• Evita o compartilhamento dos dados com todos os componentes

72

Introdução ao Pinia
Criando uma Store

• Diretivas são atributos especiais começados com o prefixo v-

• Utilizadas para realizar a vinculação de atributos

• Tem como objetivo aplicar reativamente os efeitos colaterais da mudança
dos valores de suas expressões na DOM

73

import { createPinia } from 'pinia'

app.use(createPinia())

<script setup>
import { counterStore } from '@/stores/counter'
const myCounter = useCounterStore()
 myCounter.count++
</script>

import { defineStore } from 'pinia'
export const useCounterStore = defineStore('counter', () => {
 const count = ref(0)
 return { count }
})

Introdução ao Pinia
Core concepts - Getters

• Algumas vezes precisamos de um estado derivado do estado da store

• São o equivalente ao computed values só que aplicados a states

• Precisam ser síncronos

74

Introdução ao Pinia
Core concepts - Getters

• Diretivas são atributos especiais começados com o prefixo v-

• Utilizadas para realizar a vinculação de atributos

• Tem como objetivo aplicar reativamente os efeitos colaterais da mudança
dos valores de suas expressões na DOM

75

<script setup>
 const store = taskStore()
</script>

 <template>

<p>
 #Done {{ store.doneTasksCount }}
</p>

 </template>

import { ref, computed } from 'vue'
export const taskStore = defineStore('main', () =>
{
 const todos = ref([
 { id: 1, text: '...', done: true },
 { id: 2, text: '...', done: false }
])

 const doneTasks = computed(() =>
todos.value.filter(todo => todo.done))

 const doneTasksCount = computed(() =>
doneTodos.value.length)

 return { doneTasks, doneTasksCount }
})

Introdução ao Pinia
Core concepts - Actions

• Ações são o equivalente aos métodos porém aplicados em stores

• Diferentemente de getters, podem ser assíncronas

• Perfeitas para definir lógicas de negócios

76

<script setup>
 const store = useStore()
 store = store.randomizeCounter()
</script>

Introdução ao Pinia
Core concepts - Action

77

export const useCounterStore =
defineStore('main', () => {

 const counter = ref(0)

 function increment() {
 return counter.value++
 }

 function randomizeCounter() {
 counter.value = Math.round(100 *
Math.random())
 }

 return { randomizeCounter }
})

Introdução ao Pinia
Estrutura de uma aplicação

• Diretivas são atributos especiais começados com o prefixo v-

• Utilizadas para realizar a vinculação de atributos

• Tem como objetivo aplicar reativamente os efeitos colaterais da mudança
dos valores de suas expressões na DOM

78

├── index.html
├── main.js
├── api
│ └── ... # abstractions for making API requests
├── components
│ ├── App.vue
│ └── ...
└── stores
 ├── user.js
 ├── main.js

Introdução ao Pinia
Ecossistema

79

Ecossistema
Vue

Vue CLI

Vue
Loader

Vue
Dev

Tools

Referências

• Why Vue CLI?

• Jargon-Free Webpack Intro For VueJS Users

• Introducing Vite: A Better Vue CLI?

• Has Vite Made Vue CLI Obsolete?

• Vue 3.2 - Using Composition API with Script Setup

• WTF is Vuex? A Beginner's Guide To Vuex 4

• Complex Vue 3 state management made easy with Pinia

• https://next.router.vuejs.org
80

https://vuejsdevelopers.com/topics/vue-cli/
https://vuejsdevelopers.com/2017/12/04/webpack-intro-vue-js/
https://www.codemag.com/Article/2109071/Introducing-Vite-A-Better-Vue-CLI
https://vuejsdevelopers.com/2020/12/07/vite-vue-cli/
https://www.thisdot.co/blog/vue-3-2-using-composition-api-with-script-setup
https://vuejsdevelopers.com/2017/05/15/vue-js-what-is-vuex/
https://blog.logrocket.com/complex-vue-3-state-management-pinia/
https://next.router.vuejs.org

Por hoje é só

81

