
Prof. Bruno Góis Mateus (brunomateus@ufc.br)

Voltando ao passado:  
Um mundo estático
QXD0279 - Desenvolvimento de Software para Web 2

mailto:brunomateus@ufc.br

Agenda

• Introdução

• De volta ao passado, a Web pré 1994

• Introdução ao Node

• Criando um projeto Node

2

Introdução

Introdução
Front End vs Back End

• Front End developer e Back End developer são posições que estão em alta

• No entanto, o que é um Front End ? O que é um Back End?

•O que faz um desenvolvedor de Front End?

•O que faz um desenvolvedor de Back End?

4

Introdução
Front End vs Back End

5

Introdução
Front End vs Back End

6

Introdução
Front End vs Back End

• De maneira simplória:

•O código do Front End é aquele executado no cliente ou no lado do cliente

•O código do Back End é aquele executado no servidor ou no lado do
servidor

7

Internet

HTTP

Cliente Servidor

Introdução
Front End vs Back End

8

De volta ao passado, a Web pré
1994

De volta ao passado, a Web pré 1994

•O primeiro navegador da World Wide Web foi lançado em 1990

• Em outubro de 1991, Tim Bernes-Lee publica um documento descrevendo 18
tags do HTML

• Em 1992 a primeira imagem da web foi publicada

• Em 1994, o Mosaic, primeiro navegador modo gráfico  
foi lançado pela Netscape

10

De volta ao passado, a Web pré 1994

• Nesta época não existia JavaScript e nem o CGI (Common Gateway
Interface)

• A web era realmente estática e nenhum código era executado no cliente

• Neste cenário dois tipos de software se destacavam:

• Navegadores

• Servidores web

• Podemos dizer que o desenvolvimento web nasceu no lado do servidor

11

De volta ao passado, a Web pré 1994
Servidor Web

• E se a gente voltasse no tempo e tivesse que construir um servidor web para
atender as necessidades da época, o que precisaríamos fazer?

•O que é um servidor web?

• Algumas dicas:

• A comunicação entre cliente e servidor usa o protocolo HTTP

• Por sua vez, HTTP é transportado via TCP

12

Introdução ao Node

Introdução ao Node
Node

• É uma cross-platform runtime de código aberto que permite que
desenvolvedores criem aplicações server-side em JS

• Executada “diretamente” no sistema operacional, fora do contexto do
navegador

• Prover suporte a API mais tradicionais dos sistemas operacionais

• Ex: HTTP, FileSystem

14

Introdução ao Node
História

• Enquanto a web nasceu em 1990

• JavaScript nasceu 1995

• Node foi criado 2009

• Antes do sucesso do Node, a Netscape havia investido no LiveWire

• Um ambiente capaz de criar páginas web dinâmicas usando JavaScript no
server-side

• Não obteve sucesso

15

Introdução ao Node
História

• Aplicações server-side com JavaScript se popularizam com o Node.Js

• Fator decisivo: Timing

• JavaScript passou ser utilizado em aplicações de maior porte graças a
Web 2.0. Ex: Flickr, Gmail, etc.

• Engine JavaScript melhoraram consideravelmente devido a competição
entre navegadores

• Node usa a V8 ou Chrome V8, uma engine open-source JavaScript do
Projeto Chromium que evoluiu bastante devido a essa competição

16

Introdução ao Node
História - v8

• Engine de alto desempenho JavaScript e WebAssembly

• Escrita em C++

• Usada no Chrome e no Node entre outros projetos

• Compila e executa código JS, gerencia a alocação de memória 
e realiza a desalocação de objetos não necessário (garbage collector)

17

Introdução ao Node
História - Timeline

18

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

• Node foi
criado

• Primeira forma
de NPM foi
criada

• Express foi
criado

• Socket.io foi
criado

• NPM 1.0
• Linkedin, Uber

e outras
passam a usa
o Node

• A adoção
cresceu
rapidamente

• Ghost:
primeira
grande
plataforma de
blog é lançada

• Big Fork: Io.js
é criado para
introduzir
novidades do
ES6

• Node foundation
é criada

• Merge entre
Node e Io.js

• Node 4 lançado

• Leftpad
incidente

• Yarn é lançado
• Node 6 é

lançado

• Node 8 é
lançado

• 3 bilhões de
download por
semana no NPM

• Node 10 e
Node 11 são
lançados

• Node 12 e
Node 13 são
lançados

• Node 14 e
Node 15 são
lançados

2021

• Node 16
e 17 são
lançados

2022

• Node 18 é
lançado

• Node 19 é
lançado em
outubro

Introdução ao Node
Características

• Node.js app são executadas em um único processo

• Não é necessária a criação de uma thread para cada requisição

• Fornece um conjunto de operações primitivas de I/O assíncronas

• Evita que códigos de maneira geral sejam “bloqueantes”

• Escalável e mais simples de debugar, não há concorrência entre threads

• Novidades do ECMAScript podem ser usadas sem problemas já que o usuário
possui o controle do ambiente de execução

• No front-end dependemos dos navegadores
19

Introdução
Características

20

Introdução
Características

21

Introdução
Event loop

• Event loop: é o garçom (único) e altamente eficiente, que anota os pedidos, serve os
pratos e orienta os clientes

• Ele consegue lidar com muitas tarefas simples rapidamente.

• O Thread pool: é a equipe da cozinha (vários chefs).

• Quando o garçom recebe um pedido complexo ele não a prepara pessoalmente

• Ele a repassa para a equipe da cozinha.

• Offloading: é o garçom repassando o pedido para um chef.

• Fila de Callbacks e Notificação do Loop de Eventos: é o chef tocando a campainha
quando o prato está pronto, e o garçom então o pega para servir ao cliente

22

Event loop
Introdução

23

Introdução
Event loop

• Links interessantes

• JavaScript Visualizer 9000

• What the heck is the event loop anyway?

• http://latentflip.com/loupe/

25

https://www.jsv9000.app/
https://www.youtube.com/watch?v=8aGhZQkoFbQ
http://latentflip.com/loupe/

Introdução
Vantagens

• Excelente desempenho e escalável

• Escrito em JS, familiar para desenvolvedores Web

• Grande comunidade de usuários e desenvolvedores

• O gerenciador de pacote do Node, NPM, prover acesso a diversas
bibliotecas reusáveis

• Gerenciamento de dependências

• Portável, disponível para Windows, macOS, Linux, Solaris, FreeBSD,
OpenBSD, WebOS, and NonStop OS

26

Criando um projeto Node

Criando um projeto Node
Hello World

• O seu primeiro programa em Node

28

console.log("Olá mundo");

node app.js

• os

• path

• perf_hooks

• process

• querystring

• readline

• repl

Criando um projeto Node
Módulos nativos

29

• assert

• buffer

• child_process

• console

• cluster

• crypto

• dgram

• dns

• events

• fs

• http

• http2

• https

• net

• stream

• string_decoder

• timers

• tls

• tty

• url

• util

• v8

• vm

• wasi

• worker

• zlib

https://nodejs.org/api/os.html
https://nodejs.org/api/path.html
https://nodejs.org/api/perf_hooks.html
https://nodejs.org/api/process.html
https://nodejs.org/api/querystring.html
https://nodejs.org/api/readline.html
https://nodejs.org/api/repl.html
https://nodejs.org/api/assert.html
https://nodejs.org/api/buffer.html
https://nodejs.org/api/child_process.html
https://nodejs.org/api/console.html
https://nodejs.org/api/dgram.html
https://nodejs.org/api/crypto.html
https://nodejs.org/api/dgram.html
https://nodejs.org/api/dns.html
https://nodejs.org/api/events.html
https://nodejs.org/api/fs.html
https://nodejs.org/api/http.html
https://nodejs.org/api/http2.html
https://nodejs.org/api/https.html
https://nodejs.org/api/net.html
https://nodejs.org/api/stream.html
https://nodejs.org/api/string_decoder.html
https://nodejs.org/api/timers.html
https://nodejs.org/api/tls.html
https://nodejs.org/api/tty.html
https://nodejs.org/api/url.html
https://nodejs.org/api/util.html
https://nodejs.org/api/v8.html
https://nodejs.org/api/vm.html
https://nodejs.org/api/wasi.html
https://nodejs.org/api/worker_threads.html
https://nodejs.org/api/zlib.html

Nome Descrição

console Prover um console para debug

events Prover uma API para o gerenciamento de eventos

fs Prover uma API para interagir com o sistema de arquivos

http Prover uma implementação HTTP cliente/servidor

os Prover propriedades e métodos utilitários relacionados ao sistema operacional

path Prover utilitários para trabalhar com path e diretórios

querystring Prover utilitários para “parsear” e formatar URL de string de consulta (querystring)

Criando um projeto Node
Módulos nativos

30

https://nodejs.org/api/console.html
https://nodejs.org/api/events.html
https://nodejs.org/api/fs.html
https://nodejs.org/api/http.html
https://nodejs.org/api/os.html
https://nodejs.org/api/path.html
https://nodejs.org/api/querystring.html

Criando um projeto Node
Módulos nativos

31

Nome Descrição

repl Prover um implementação Read-Eval-Print-Loop (REPL) disponível como um versão standalone, mas que
também pode ser adicionada a outras aplicações

timers Prover funções para agendar execuções de funções em um período futuro

url Prover utilitários para resolução e “parseamento” de URL

https://nodejs.org/api/repl.html
https://nodejs.org/api/timers.html
https://nodejs.org/api/url.html

Criando um projeto Node
NPM

• Node Package Manager - Gerenciador de pacotes do Node

• Inicialmente era uma maneira de fazer download e gerenciar as dependências

• Atualmente é também utilizado em projetos front-end

• Possui mais de 1.3 milhões de pacotes disponíveis

• Maior repositório de software do mundo

32

Criando um projeto Node

• Para iniciar um projeto node, é necessário criar um arquivo chamado
package.json

• Lista todas as dependências do projeto e suas versões

• Torna o processo de build reproduzível e portanto mais fácil de compartilhar
com outros desenvolvedores

• Deve conter pelo menos o atributo name e version

• A maneira mais simples de criar esse arquivo é usando o comando:

• $ npm init --yes

33

Criando um projeto Node

34

{
 "name": "my_package",
 "description": "",
 "version": "1.0.0",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "repository": {
 "type": "git",
 "url": "https://github.com/monatheoctocat/my_package.git"
 },
 "keywords": [],
 "author": "",
 "license": "ISC",
 "bugs": {
 "url": "https://github.com/monatheoctocat/my_package/issues"
 },
 "homepage": "https://github.com/monatheoctocat/my_package"
}

Informação contida no README ou string vazia
Nome do diretório

Sempre 1.0.0

Script de test vazio

No caso de se um  
repositório git

Sempre vazio
Sempre vazio
Por padrão ISC

Caso hospedado

no GitHub

Caso hospedado

no GitHub

Criando um projeto Node
NPM e suas funções

• Instalar e atualizar dependências

• $ npm install ou $ npm install <package-name>

• $ npm update ou $ npm update <package-name>

• Versionamento

• Execução de tarefas

• Ex: Executar em produção, testar …

35

Prática

Prática
Construindo nosso servidor web

• Primeiramente o servidor web deve ser apto a se comunicar com a rede
(socket) - módulo net do node

•O servidor precisa se capaz de se comunicar usando um formato específico
determinado pelo protocolo (HTTP)

•O servidor deve ser capaz responder as requisições com arquivos estáticos
localizando no seu sistema de arquivo

37

Prática
Construindo nosso servidor web

• Passo a passo:

1.Criar um projeto NodeJs com suporte a Typescript

2.Criar um HTTP Server usando o pacote HTTP

3.Carregar um página HTML qualquer

4.Analisar a URL e carregar o recurso pedido

5.Ta fácil? Tente não usar o pacote HTTP e assim trabalhar a nível de socket

38

Construindo nosso servidor web

• Criando um projeto Node com suporte a Typescript

39

Cria o arquivo package.json com configurações padrão
npm init -y

Instalando o compilador TS e os tipos para API do Node
npm install -—save-dev typescript @types/node

TSX garante a execução dos arquivos com hot reload
npm install --save-dev tsx

Gerando o arquivo de configuração do TypeScript
npx tsc --init

Construindo nosso servidor web
Sugestão de tsconfig

40

{
 "compilerOptions": {
 "target": "ES2020",
 "module": "ESNext",
 "moduleResolution": "NodeNext",
 "rootDir": "src",
 "outDir": "dist",
 "esModuleInterop": true,
 "strict": true,
 "skipLibCheck": true
 },
 "include": ["src"]
}

Construindo nosso servidor web
Atualize o package.json

41

{
 "name": "meu-projeto",
 "version": "1.0.0",
 "type": "module",
 "scripts": {
 "dev": "tsx watch src/index.ts",
 "start": "tsx src/index.ts",
 "build": "tsc",
 "typecheck": "tsc --noEmit"
 },
 "devDependencies": {
 "tsx": "^4.0.0",
 "typescript": "^5.6.0",
 "@types/node": "^20.0.0"
 }
}

Construindo nosso servidor web

42

import { IncomingMessage, ServerResponse, createServer } from 'http'

const port = 1010

const server = createServer(async (req: IncomingMessage, res: ServerResponse) => {
 console.log(`${req.method} - ${req.url} `)
 res.setHeader('Content-Type','text/html')
 res.writeHead(200)
 res.end('<html><head></head><body>Oi mundo</body></html>')
});

server.listen(port, () => {
 console.log(`Servidor pronto. Escutando requisições na porta ${port}`)
})

Criando um servidor HTTP

Iniciando o modo de escuta

Construindo nosso servidor web

• O resto é com vocês!

43

Referências

• Web Design History Timeline

• Common Gateway Interface

• Build Your Own Web Server From Scratch In Node.JS

• Introduction to Node.js

• How To Create a Web Server in Node.js with the HTTP Module

• 40 Useful NPM Packages for Node.js Apps in 2021

• The Node Core Modules

• Node.js Architecture and 12 Best Practices for Node.js Development

• How to set up TypeScript with Node.js and Express (2023)

44

https://www.webdesignmuseum.org/web-design-history
https://en.wikipedia.org/wiki/Common_Gateway_Interface
https://build-your-own.org/webserver/
https://nodejs.org/en/learn/getting-started/introduction-to-nodejs
https://www.digitalocean.com/community/tutorials/how-to-create-a-web-server-in-node-js-with-the-http-module
https://leanylabs.com/blog/npm-packages-for-nodejs/
https://flaviocopes.com/node-core-modules/
https://scoutapm.com/blog/nodejs-architecture-and-12-best-practices-for-nodejs-development
https://dev.to/cristain/how-to-set-up-typescript-with-nodejs-and-express-2023-gf

Por hoje é só

45

