& UNIVERSIDADE
i:W®s) FEDERAL DO CEARA

S yNiTA FOS .
Bg® CAMPUS QUIXADA

Voltando ao passado:
Um mundo estatico

QXDO0279 - Desenvolvimento de Software para Web 2

Prof. Bruno Gois Mateus (brunomateus@ufc.br)

mailto:brunomateus@ufc.br

Agenda

* |Introducao

* De volta ao passado, a Web pré 1994
* Introducao ao Node

* Criando um projeto Node

Introducao

Introducao
Front End vs Back End

* Front End developer e Back End developer sao posicoes que estao em alta
* No entanto, o que € um ? O que é um ?
* O que faz um desenvolvedor de ?

* O que faz um desenvolvedor de ?

Introducao
Front End vs Back End

Q@
am Users see

Q 20% of total effort

Piorilend

O
am Users don't see

BaC ke nd * 80% of total effort
|_D Repetitive

Introducao
Front End vs Back End

FRONT

Introducao
Front End vs Back End

* De maneira simploria:
* O codigo do Front End é aquele executado no cliente ou no lado do cliente

* O codigo do Back End é aquele executado no servidor ou no lado do
servidor Cliente Servidor

Introducao
Front End vs Back End

De volta ao passado, a Web pre
1994

De volta ao passado, a Web pre 1994

* O primeiro navegador da fol lancado em 1990

 Em outubro de 1991, publica um documento descrevendo 18

* Em 1992 a primeira imagem da web fol publicada

* Em 1994, o , primeiro navegador modo grafico
fol lancado pela Netscape

10

De volta ao passado, a Web pre 1994

* Nesta epoca e nem o

* A e nenhum codigo era executado no cliente
* Neste cenario dois tipos de software se destacavam:

* Navegadores

» Servidores web

 Podemos dizer que o desenvolvimento

11

De volta ao passado, a Web pre 1994
Servidor Web

* E se a gente voltasse no tempo e tivesse que construir um servidor web para
atender as necessidades da época, o que precisariamos fazer?

* O que é um servidor web?
* Algumas dicas:
* A comunicacao entre cliente e servidor usa o protocolo HTTP

* Por sua vez, HTTP é transportado via TCP

12

Introducao ao Node

Introducao ao Node
Node

 E uma cross-platform runtime de codigo aberto que permite que
desenvolvedores criem aplicacoes server-side em JS

 Executada “diretamente” no sistema operacional, fora do contexto do
navegador

* Prover suporte a APl mais tradicionais dos sistemas operacionais

« Ex: HTTPR FileSystem

14

Introducao ao Node

Historia

 Enquanto a web nasceu em

e JavaScript nasceu

* Node foi criado

 Antes do sucesso do Node, a Netscape havia investido no LiveWire

 Um ambiente capaz de criar paginas web dinamicas usando JavaScript no
server-side

e Nao obteve sucesso

15

Introducao ao Node

Historia

* Aplicacoes com JavaScript se popularizam com o
* Fator decisivo:

e JavaScript passou ser utilizado em aplicacoes de maior porte gracas a
Web 2.0. Ex: Flickr, Gmail, etc.

 Engine JavaScript melhoraram consideravelmente devido a competicao
entre navegadores

. , uma engine open-source JavaScript do
Projeto Chromium que evoluiu bastante devido a essa competicao

16

Introducao ao Node

Historia - v8

* Engine de alto desempenho JavaScript e WebAssembly
 Escrita em C++
 Usada no Chrome e no Node entre outros projetos

« Compila e executa codigo JS, gerencia a alocacao de memoria
e realiza a desalocacao de objetos nao necessario (garbage collector)

17

Introducao ao Node

Historia - Timeline

e NPM1.0 °
e Linkedin, Uber

e outras

passam a usa

o Node

Node foi
criado

Primeira forma
de NPM foi
criada

e Node 8 é
lancado

e 3 bilhoes de
download por
semana no NPM

¢ Node foundation
é criada

e Merge entre
Node e lo.js

¢ Node 4 lancado

Ghost:
primeira
grande
plataforma de
blog é lancada

e Node12e
Node 13 sao
lancados

e Node 16
e 17 sao
lancados

r— r— — e e r—
mr— — e e e r— — —— .

e EXxpress foi
criado

e Socket.io foi
criado

cresceu
rapidamente

e A adocao

e Node 18 é
lancado

e Node 19 ¢é
lancado em
outubro

o | eftpad
incidente

e Yarn e lancado

e Node 6 é
lancado

e Big Fork: lo.Js
é criado para
Introduzir
novidades do
ES6

e Node 14 e
Node 15 sao
lancados

e Node 10 e
Node 11 sao
lancados

18

Introducao ao Node

Caracteristicas

 Node.js app sao executadas em um
 Nao e necessaria a criacao de uma thread para cada requisicao
* Fornece um conjunto de operacoes primitivas de I/O assincronas
« Evita que cddigos de maneira geral sejam
» Escalavel e mais simples de debugar, nao ha concorréncia entre threads

 Novidades do podem ser usadas sem problemas ja que o usuario
possui 0 controle do ambiente de execucao

* No front-end dependemos dos navegadores

19

Introducao

Caracteristicas

REQUEST 1

<

REQUEST 2

REQUEST n

=

REQUEST

THREAD POOL

THREAD 1

THREAD 2

THREAD n

0/1 bupjoolg

20

Introducao

Caracteristicas

REQUEST 1

REQUEST n

A -
A=
B .|

NODE.JS SERVER

LIBUV
(async VO)

BLOCKING
OPERATIONS

EVENT

LOOP

(SINGLE

EXECUTE
THREADED)

CALLBACK
<

KERNEL
THREADS

O/1 Bupjoojq uopN

21

Introducao

Event loop

* Event loop: &€ o garcom (Unico) e altamente eficiente, que anota os pedidos, serve os
pratos e orienta os clientes

* Ele consegue lidar com muitas tarefas simples rapidamente.

O Thread pool: é a equipe da cozinha (varios chefs).
 Quando o garcom recebe um pedido complexo ele nao a prepara pessoalmente
* Ele arepassa para a equipe da cozinha.

» Offloading: € o garcom repassando o pedido para um chef.

* Fila de Callbacks e Notificacao do Loop de Eventos: é o chef tocando a campainha
quando o prato esta pronto, € o garcom entao o pega para servir ao cliente

22

Introducao

Event loop Libuv Thread Pool

““c.-, ! L~ vy) 2
& ¥
’ [(t‘a[‘qkl - r I,

D
Ca\llbok)

g
Event Loop Callbuak
/ Main Thread (Callbook) ’

Introducao

Event loop

e |Inks interessantes

o JavaScript Visualizer 9000

 What the heck is the event loop anyway?

e http://latentflip.com/loupe/

25

https://www.jsv9000.app/
https://www.youtube.com/watch?v=8aGhZQkoFbQ
http://latentflip.com/loupe/

Introducao

Vantagens

e Excelente desempenho e escalavel
 Escrito em JS, familiar para desenvolvedores Web
* Grande comunidade de usuarios e desenvolvedores

* O gerenciador de pacote do Node, NPM, prover acesso a diversas
bibliotecas reusaveis

 Gerenciamento de dependéncias

* Portavel, disponivel para Windows, macOS, Linux, Solaris, FreeBSD,
OpenBSD, WebQOS, and NonStop OS

26

Criando um projeto Node

Criando um projeto Node
Hello World

* O seu primeiro programa em Node

console.log ("Ola mundo") ;

28

Criando um projeto Node

Modulos nativos

e assert * dns * 0S

e buffer e events e path

e child process -« fs e perf hooks
e console e hitp * Process

e cluster e http2 e guerystring
* Crypto e https » readline

e dgram e net * repl

stream

string decoder

timers

=

= B2
—

29

https://nodejs.org/api/os.html
https://nodejs.org/api/path.html
https://nodejs.org/api/perf_hooks.html
https://nodejs.org/api/process.html
https://nodejs.org/api/querystring.html
https://nodejs.org/api/readline.html
https://nodejs.org/api/repl.html
https://nodejs.org/api/assert.html
https://nodejs.org/api/buffer.html
https://nodejs.org/api/child_process.html
https://nodejs.org/api/console.html
https://nodejs.org/api/dgram.html
https://nodejs.org/api/crypto.html
https://nodejs.org/api/dgram.html
https://nodejs.org/api/dns.html
https://nodejs.org/api/events.html
https://nodejs.org/api/fs.html
https://nodejs.org/api/http.html
https://nodejs.org/api/http2.html
https://nodejs.org/api/https.html
https://nodejs.org/api/net.html
https://nodejs.org/api/stream.html
https://nodejs.org/api/string_decoder.html
https://nodejs.org/api/timers.html
https://nodejs.org/api/tls.html
https://nodejs.org/api/tty.html
https://nodejs.org/api/url.html
https://nodejs.org/api/util.html
https://nodejs.org/api/v8.html
https://nodejs.org/api/vm.html
https://nodejs.org/api/wasi.html
https://nodejs.org/api/worker_threads.html
https://nodejs.org/api/zlib.html

Criando um projeto Node

Modulos nativos

Nome Descricao

console Prover um console para debug

events Prover uma API para o gerenciamento de eventos

fs Prover uma API para interagir com o sistema de arquivos

http Prover uma implementagcao HTTP cliente/servidor

0s Prover propriedades e métodos utilitarios relacionados ao sistema operacional
path Prover utilitarios para trabalhar com path e diretodrios

querystring

Prover utilitérios para “parsear” e formatar URL de string de consulta (querystring)

30

https://nodejs.org/api/console.html
https://nodejs.org/api/events.html
https://nodejs.org/api/fs.html
https://nodejs.org/api/http.html
https://nodejs.org/api/os.html
https://nodejs.org/api/path.html
https://nodejs.org/api/querystring.html

Criando um projeto Node

Modulos nativos

Nome Descricao
repl Prover um implementacao Read-Eval-Print-Loop (REPL) disponivel como um versao standalone, mas que

também pode ser adicionada a outras aplicacoes

timers Prover funcdes para agendar execugdes de fungdes em um periodo futuro

rl Prover utilitarios para resolucao e “parseamento” de URL

31

https://nodejs.org/api/repl.html
https://nodejs.org/api/timers.html
https://nodejs.org/api/url.html

Criando um projeto Node
NPM

 Node Package Manager - Gerenciador de pacotes do Node

 Inicialmente era uma maneira de fazer download e gerenciar as dependencias
* Atualmente € também utilizado em projetos front-end

e Possui mais de 1.3 milhoes de pacotes disponiveis

e Maior repositorio de software do mundo

npm

32

Criando um projeto Node

e Para iniciar um projeto , € necessario criar um arquivo chamado

o Lista todas as dependéncias do projeto e suas versoes

e Torna o processo de build reproduzivel e portanto mais facil de compartilhar
com outros desenvolvedores

 Deve conter pelo menos o atributo e

* A maneira mais simples de criar esse arquivo € usando o comando:

* S

33

Criando um projeto Node

"name": |"my package",
"description":|"",
"version": |"1.0.0",
"scripts": |
"test": "echo \"Error: no test specified\" && exit 1"
Yy
"repository": {
"type": "git",
"url": "https://github.com/monatheoctocat/my package.git"
Ty
"keywords": |[],
"author": | "",
"license": |"ISC",
"bugs": {
"url": |"https://github.com/monatheoctocat/my package/issues"

i
"homepage":| "https://github.com/monatheoctocat/my package"

Criando um projeto Node

NPM e suas funcoes

* Instalar e atualizar dependéncias

e \Versionamento
 Execucao de tarefas

* Ex: Executar em producao, testar ...

35

Pratica

Pratica

Construindo nosso servidor web

* Primeiramente o servidor web deve ser apto a se comunicar com a rede
(socket) -

O servidor precisa se capaz de se comunicar usando um formato especifico
determinado pelo protocolo (HTTP)

* O servidor deve ser capaz responder as requisicoes com arquivos estaticos
localizando no seu sistema de arquivo

37

Pratica

Construindo nosso servidor web

* Passo a passo:
1.Criar um projeto Nodeds com suporte a Typescript
2.Criar um HTTP Server usando o pacote HTTP
3.Carregar um pagina HTML qualquer
4.Analisar a URL e carregar o recurso pedido

5.Ta facil? Tente nao usar o pacote HTTP e assim trabalhar a nivel de socket

38

Construindo nosso servidor web

 Criando um projeto Node com suporte a Typescript

Cria o arquivo package.json com configuracdes padrdo
npm 1nit -y

Instalando o compilador TS e os tipos para API do Node
npm install -—save-dev typescript Qtypes/node

TSX garante a execucdo dos arquivos com hot reload
npm 1nstall —--save-dev tsx

Gerando o arquivo de configuracdo do TypeScript
npx tsc —--1nit

39

Construindo nosso servidor web

Sugestao de tsconfig

{

"compililerOptions": {
"target": "ES2020",
"module": "ESNext",
"moduleResolution": "NodeNext",
"rootDir": "src",
"outDir": "dist",
"esModulelnterop": true,
"strict": true,

"skipLibCheck": true
I

"1nclude": ["src"]

40

Construindo nosso servidor web

Atualize o package.json

J

"name": "meu-projeto",

"version": "1.0.0",

"tyvpe": "module'",

"scripts": {
"dev": "tsx watch src/index.ts"
"start": "tsx src/index.ts",

"build": "tsc",
"typecheck": "tsc —-—-noEmit"

b7

"devDependencies": {
"tsx": "4 .0.0",
"typescript": "*5.6.0",
"Qtypes/node": "720.0.0"

J

41

Construindo nosso servidor web

import { IncomlingMessage, ServerResponse, createServer } from 'http'

Criando um servidor HTTP
const port = 1010 4?—””””’—

const server = createServer (async (req: IncomingMessage, res: ServerResponse) => {
console.log(S$S{reg.method} - S$S{reg.url})
res.setHeader ('Content-Type', "text/html")
res.writeHead (200)
res.end ('<html><head></head><body>0i1 mundo</body></html>")

}) s / Iniciando o0 modo de escuta

server.listen (port, () => {
console.log(Servidor pronto. Escutando requisicdes na porta S${port})

})

Construindo nosso servidor web

e O resto &€ com voces!

43

Referencias

 Web Design History Timeline

« Common Gateway Interface

 Build Your Own Web Server From Scratch In Node.JS

* |ntroduction to Node.|s

« How To Create a Web Server in Node.|s with the HTTP Module

* 40 Useful NPM Packages for Node.|s Apps in 2021

e The Node Core Modules

 Node.js Architecture and 12 Best Practices for Node.js Development

» How to set up TypeScript with Node.js and Express (2023)

44

https://www.webdesignmuseum.org/web-design-history
https://en.wikipedia.org/wiki/Common_Gateway_Interface
https://build-your-own.org/webserver/
https://nodejs.org/en/learn/getting-started/introduction-to-nodejs
https://www.digitalocean.com/community/tutorials/how-to-create-a-web-server-in-node-js-with-the-http-module
https://leanylabs.com/blog/npm-packages-for-nodejs/
https://flaviocopes.com/node-core-modules/
https://scoutapm.com/blog/nodejs-architecture-and-12-best-practices-for-nodejs-development
https://dev.to/cristain/how-to-set-up-typescript-with-nodejs-and-express-2023-gf

Por hoje e soO

