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Agenda

• Introdução

• CGI

• Formulários

• JavaScript
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Introdução



Introdução

• Em 1994 o navegador Mosaic já dava suporte a formulários para envio de 
dados para o servidor


• Neles, a entrada do usuário é obtida em elementos de formulário


• O envio do formulário remete essa entrada para o servidor


• O servidor então processa a entrada e gera uma nova página HTML


• Normalmente com novos elementos de formulário para exibição no 
cliente
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Introdução

• Diante do potencial apresentado pela web, o time do National Center for 
Supercomputing Applications (NCSA)  desenvolveu naquela época uma 
tecnologia que permitiu o uso de páginas dinâmicas


• Common Gateway Interface (CGI)


• Em 1994, páginas dinâmicas poderiam ser servidas via método POST


• Combinando formulários com CGI, naquele momento um novo mundo surgia


• Um mundo minimamente dinâmico

5



Um mundo dinâmico



Um mundo dinâmico
Common Gateway Interface Programming (CGI)

• Anos antes da invenção do JavaScript, a especificação do que viríamos a 
conhecer como CGI começou a sair do papel


• Esta tecnologia foi pioneira na adição de interatividade em páginas web


• Foi inventada em 1993 no NCSA, dona de um dos mais notáveis servidores 
web da época, o NCSA httpd


• No futuro o seu código-fonte serviu base para o Apache HTTP Server
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A ideia era possibilitar que um programa 
pudesse ser iniciado via página web e que 

seu resultados pudesse ser enviado ao cliente
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Um mundo dinâmico
Common Gateway Interface Programming (CGI)

•Geralmente, o servidor HTTP tinha uma pasta, que é designada como uma 
coleção de arquivos, 


• Estes arquivos são aqueles que podem ser enviados para os clientes


• CGI estende esse sistema, permitindo designar um diretório dentro da 
coleção de documento contendo scripts executáveis 


• Também conhecido como diretório CGI


• Por exemplo, /usr/local/apache/htdocs/cgi-bin 
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Um mundo dinâmico
Common Gateway Interface Programming (CGI)
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Um mundo dinâmico
Um Processo, Uma Requisição, Um Problema

1. Requisição Chega: O servidor (ex: Apache) recebe o pedido (/cgi-bin/script.pl)


2. Criação do Processo (O Custo!): Para cada requisição, o servidor faz um fork ou spawn 
para inicializar um novo processo do zero para rodar o script


3. Transferência de Dados: 


1. Entrada: Dados da requisição (POST) vão para o STDIN do novo processo


2. Contexto: Metadados HTTP (Headers) vão para as Variáveis de Ambiente do 
processo


4. Resposta: O script gera o HTML e o envia para o STDOUT (Saída Padrão)


5. Destruição: O processo CGI é imediatamente encerrado e destruído
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CGI e Formulários HTML

• Os scripts CGI eram usados em conjunto com formulários HTML


• Remontam aos primórdios da Web e são anteriores à própria JavaScript


• São o mecanismo por trás da primeira geração de aplicativos Web


• Neles, a entrada do usuário é obtida em elementos de formulário


• O envio do formulário remete essa entrada para o servidor


• O servidor processa a entrada e gera uma nova página HTML 
(normalmente com novos elementos de formulário) para exibição pelo 
cliente
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Um mundo dinâmico
Common Gateway Interface Programming (CGI)

•O script CGI podiam ser escritos em qualquer linguagem de programação


• Inicialmente eram escritos em C


• Script em Perl foram muitos populares
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O CGI permitiu que as páginas da web fossem 
personalizadas para o usuário ou atualizadas com 

informações em tempo real (ex: contadores de acesso, 
formulários de contato, leituras de banco de dados).
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Um mundo dinâmico
Exemplo de uso de CGI
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<form action = "/cgi-bin/hello_get.cgi" method = "GET">
   First Name: <input type = "text" name = "first_name">  <br>

   Last Name: <input type = "text" name = "last_name">
   <input type = "submit" value = "Submit">
</form>



Um mundo dinâmico
Exemplo de uso de CGI
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#!/usr/bin/perl

local ($buffer, @pairs, $pair, $name, $value, %FORM);
# Read in text
$ENV{'REQUEST_METHOD'} =~ tr/a-z/A-Z/;

if ($ENV{'REQUEST_METHOD'} eq "POST") {
   read(STDIN, $buffer, $ENV{'CONTENT_LENGTH'});
} else {
   $buffer = $ENV{'QUERY_STRING'};
}

# Split information into name/value pairs
@pairs = split(/&/, $buffer);

foreach $pair (@pairs) {
   ($name, $value) = split(/=/, $pair);
   $value =~ tr/+/ /;
   $value =~ s/%(..)/pack("C", hex($1))/eg;
   $FORM{$name} = $value;
}

$first_name = $FORM{first_name};
$last_name  = $FORM{last_name};

print "Content-type:text/html\r\n\r\n";
print "<html>";
print "<head>";
print "<title>Hello - Second CGI Program</title>";
print "</head>";
print "<body>";
print "<h2>Hello $first_name $last_name - Second 
CGI Program</h2>";
print "</body>";
print "</html>";

1;



Um mundo dinâmico
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#!/usr/bin/perl 

print "Content-type: text/html\n"; 
print "\n";  

my $count_file = "acessos.txt"; 
my $current_count = 0; 
open(my $fh, '+<', $count_file) or die "Nao foi possivel abrir $count_file: $!"; 

# Trava o arquivo para evitar que 2 processos o modifique simultaneamente 
flock($fh, 2); 
$current_count = <$fh>; 
chomp($current_count); # Remove quebras de linha 

$current_count = $current_count + 1; 
seek($fh, 0, 0); # Volta ao início do arquivo (rewind) 



Um mundo dinâmico
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# Trunca o arquivo (limpa o conteúdo) 
truncate($fh, 0);  
# Escreve o novo valor 
print $fh $current_count; 
# Libera o bloqueio do arquivo 
flock($fh, 8);  
close $fh; 

print "<html><head><title>Contador CGI</title></head><body>\n"; 
print "<h1>Visitantes únicos: $current_count</h1>\n"; 
print "<p>Este valor foi lido e atualizado diretamente no disco pelo script 
Perl.</p>\n"; 
print "</body></html>\n"; 

exit 0; # Finaliza o script (e o processo) 



Um mundo dinâmico
O Ponto Fraco do CGI (Escalabilidade)

• Alto Custo de CPU: 

•  A inicialização e destruição de um novo processo é lenta e intensa para o sistema 
operacional


• Falta de Persistência: 


• Não havia como manter conexões com bancos de dados, cache ou sessões de 
usuário ativas na memória entre as requisições. Tudo tinha que ser refeito.


• Consequência: 


• Sites com alto tráfego rapidamente se tornavam lentos ou indisponíveis devido à 
sobrecarga do servidor web
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Um mundo dinâmico
Exemplo de uso de CGI

• Apesar de não ser um componente dinâmico no navegador, como o 
JavaScript, possibilitou a execução de programas interativos na web dos 
tempos de 1993-1994


• No entanto, ainda em 1994, PHP, inicialmente chamada de Personal Home 
Page Tools, se destacou e acabou tomando o espaço do CGI
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Processando dados de um 
formulário



Processando dados de um formulário
Prática

• Usando NodeJs crie um formulário de cadastro e verifique se as opções 
enviadas pelo usuário são válidas


• Caso sejam válidas retorne uma página com a mensagem de sucesso


• Caso contrário, retorne a página do formulário indicando o local do erro


• Implemente o envio dos dados do formulário via GET e POST
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Processando dados de um formulário
Obtendo parâmetros de uma requisição GET

• Precisamos utilizar acessar o objeto a URL dentro do objeto que encapsula a 
requisição HTTP
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const server = http.createServer(req: IncomingMessage , res: ServerResponse) => { 
   
  const baseURL = `http://${req.headers.host}/` 
  const parsedUrl = new URL(req.url, baseURL) 

  res.statusCode = 200 
  res.setHeader('Content-Type', 'text/html; charset=utf-8') 

const name = parsedUrl.searchParams.get("name") 
res.end(`<html><head></head><body> Contéudo </body></html>`) 
});

Parseando a URL

Nome do parâmetro



Processando dados de um formulário
Obtendo parâmetros de uma requisição POST

• Precisamos utilizar acessar o objeto a URL dentro do objeto que encapsula a 
requisição HTTP
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const server = http.createServer(async(req: IncomingMessage, res: ServerResponse)) => { 
   
  const baseURL = `http://${req.headers.host}/` 
  const parsedUrl = new URL(req.url, baseURL) 

  const chunks = []; 
for await (const chunk of req) { 
chunks.push(chunk); 

} 
const data = Buffer.concat(chunks); 
res.end(data.toString()) 
});

Navegando na 

stream de dados



Referências

• Web Design History Timeline

• Common Gateway Interface

• Build Your Own Web Server From Scratch In Node.JS

• How To Create a Web Server in Node.js with the HTTP Module

• 1993: CGI Scripts and Early Server-Side Web Programming 

• PERL and CGI Tutorial
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https://www.webdesignmuseum.org/web-design-history
https://en.wikipedia.org/wiki/Common_Gateway_Interface
https://build-your-own.org/webserver/
https://www.digitalocean.com/community/tutorials/how-to-create-a-web-server-in-node-js-with-the-http-module
https://webdevelopmenthistory.com/1993-cgi-scripts-and-early-server-side-web-programming/
https://www.tutorialspoint.com/perl/perl_cgi.htm


Por hoje é só
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