
Prof. Bruno Góis Mateus (brunomateus@ufc.br)

O início da interatividade
QXD0279 - Desenvolvimento de Software para Web 2

mailto:brunomateus@ufc.br

Agenda

• Introdução

• CGI

• Formulários

• JavaScript

2

Introdução

Introdução

• Em 1994 o navegador Mosaic já dava suporte a formulários para envio de
dados para o servidor

• Neles, a entrada do usuário é obtida em elementos de formulário

• O envio do formulário remete essa entrada para o servidor

• O servidor então processa a entrada e gera uma nova página HTML

• Normalmente com novos elementos de formulário para exibição no
cliente

4

Introdução

• Diante do potencial apresentado pela web, o time do National Center for
Supercomputing Applications (NCSA) desenvolveu naquela época uma
tecnologia que permitiu o uso de páginas dinâmicas

• Common Gateway Interface (CGI)

• Em 1994, páginas dinâmicas poderiam ser servidas via método POST

• Combinando formulários com CGI, naquele momento um novo mundo surgia

• Um mundo minimamente dinâmico

5

Um mundo dinâmico

Um mundo dinâmico
Common Gateway Interface Programming (CGI)

• Anos antes da invenção do JavaScript, a especificação do que viríamos a
conhecer como CGI começou a sair do papel

• Esta tecnologia foi pioneira na adição de interatividade em páginas web

• Foi inventada em 1993 no NCSA, dona de um dos mais notáveis servidores
web da época, o NCSA httpd

• No futuro o seu código-fonte serviu base para o Apache HTTP Server

7

A ideia era possibilitar que um programa
pudesse ser iniciado via página web e que

seu resultados pudesse ser enviado ao cliente

8

Um mundo dinâmico
Common Gateway Interface Programming (CGI)

•Geralmente, o servidor HTTP tinha uma pasta, que é designada como uma
coleção de arquivos,

• Estes arquivos são aqueles que podem ser enviados para os clientes

• CGI estende esse sistema, permitindo designar um diretório dentro da
coleção de documento contendo scripts executáveis

• Também conhecido como diretório CGI

• Por exemplo, /usr/local/apache/htdocs/cgi-bin

9

Um mundo dinâmico
Common Gateway Interface Programming (CGI)

10

Internet

HTTP

Cliente Servidor

CGI

CGI

CGI

< >

HTML

Diretório CGI [3]

Servidor de

banco de dados [4]

Servidor de

Email [5]

Um mundo dinâmico
Um Processo, Uma Requisição, Um Problema

1. Requisição Chega: O servidor (ex: Apache) recebe o pedido (/cgi-bin/script.pl)

2. Criação do Processo (O Custo!): Para cada requisição, o servidor faz um fork ou spawn
para inicializar um novo processo do zero para rodar o script

3. Transferência de Dados:

1. Entrada: Dados da requisição (POST) vão para o STDIN do novo processo

2. Contexto: Metadados HTTP (Headers) vão para as Variáveis de Ambiente do
processo

4. Resposta: O script gera o HTML e o envia para o STDOUT (Saída Padrão)

5. Destruição: O processo CGI é imediatamente encerrado e destruído

11

CGI e Formulários HTML

• Os scripts CGI eram usados em conjunto com formulários HTML

• Remontam aos primórdios da Web e são anteriores à própria JavaScript

• São o mecanismo por trás da primeira geração de aplicativos Web

• Neles, a entrada do usuário é obtida em elementos de formulário

• O envio do formulário remete essa entrada para o servidor

• O servidor processa a entrada e gera uma nova página HTML
(normalmente com novos elementos de formulário) para exibição pelo
cliente

12

Um mundo dinâmico

Um mundo dinâmico
Common Gateway Interface Programming (CGI)

•O script CGI podiam ser escritos em qualquer linguagem de programação

• Inicialmente eram escritos em C

• Script em Perl foram muitos populares

13

O CGI permitiu que as páginas da web fossem
personalizadas para o usuário ou atualizadas com

informações em tempo real (ex: contadores de acesso,
formulários de contato, leituras de banco de dados).

14

Um mundo dinâmico
Exemplo de uso de CGI

15

<form action = "/cgi-bin/hello_get.cgi" method = "GET">
 First Name: <input type = "text" name = "first_name">

 Last Name: <input type = "text" name = "last_name">
 <input type = "submit" value = "Submit">
</form>

Um mundo dinâmico
Exemplo de uso de CGI

16

#!/usr/bin/perl

local ($buffer, @pairs, $pair, $name, $value, %FORM);
Read in text
$ENV{'REQUEST_METHOD'} =~ tr/a-z/A-Z/;

if ($ENV{'REQUEST_METHOD'} eq "POST") {
 read(STDIN, $buffer, $ENV{'CONTENT_LENGTH'});
} else {
 $buffer = $ENV{'QUERY_STRING'};
}

Split information into name/value pairs
@pairs = split(/&/, $buffer);

foreach $pair (@pairs) {
 ($name, $value) = split(/=/, $pair);
 $value =~ tr/+/ /;
 $value =~ s/%(..)/pack("C", hex($1))/eg;
 $FORM{$name} = $value;
}

$first_name = $FORM{first_name};
$last_name = $FORM{last_name};

print "Content-type:text/html\r\n\r\n";
print "<html>";
print "<head>";
print "<title>Hello - Second CGI Program</title>";
print "</head>";
print "<body>";
print "<h2>Hello $first_name $last_name - Second
CGI Program</h2>";
print "</body>";
print "</html>";

1;

Um mundo dinâmico

17

#!/usr/bin/perl

print "Content-type: text/html\n";
print "\n";

my $count_file = "acessos.txt";
my $current_count = 0;
open(my $fh, '+<', $count_file) or die "Nao foi possivel abrir $count_file: $!";

Trava o arquivo para evitar que 2 processos o modifique simultaneamente
flock($fh, 2);
$current_count = <$fh>;
chomp($current_count); # Remove quebras de linha

$current_count = $current_count + 1;
seek($fh, 0, 0); # Volta ao início do arquivo (rewind)

Um mundo dinâmico

18

Trunca o arquivo (limpa o conteúdo)
truncate($fh, 0);
Escreve o novo valor
print $fh $current_count;
Libera o bloqueio do arquivo
flock($fh, 8);
close $fh;

print "<html><head><title>Contador CGI</title></head><body>\n";
print "<h1>Visitantes únicos: $current_count</h1>\n";
print "<p>Este valor foi lido e atualizado diretamente no disco pelo script
Perl.</p>\n";
print "</body></html>\n";

exit 0; # Finaliza o script (e o processo)

Um mundo dinâmico
O Ponto Fraco do CGI (Escalabilidade)

• Alto Custo de CPU:

• A inicialização e destruição de um novo processo é lenta e intensa para o sistema
operacional

• Falta de Persistência:

• Não havia como manter conexões com bancos de dados, cache ou sessões de
usuário ativas na memória entre as requisições. Tudo tinha que ser refeito.

• Consequência:

• Sites com alto tráfego rapidamente se tornavam lentos ou indisponíveis devido à
sobrecarga do servidor web

19

Um mundo dinâmico
Exemplo de uso de CGI

• Apesar de não ser um componente dinâmico no navegador, como o
JavaScript, possibilitou a execução de programas interativos na web dos
tempos de 1993-1994

• No entanto, ainda em 1994, PHP, inicialmente chamada de Personal Home
Page Tools, se destacou e acabou tomando o espaço do CGI

20

Processando dados de um
formulário

Processando dados de um formulário
Prática

• Usando NodeJs crie um formulário de cadastro e verifique se as opções
enviadas pelo usuário são válidas

• Caso sejam válidas retorne uma página com a mensagem de sucesso

• Caso contrário, retorne a página do formulário indicando o local do erro

• Implemente o envio dos dados do formulário via GET e POST

22

Processando dados de um formulário
Obtendo parâmetros de uma requisição GET

• Precisamos utilizar acessar o objeto a URL dentro do objeto que encapsula a
requisição HTTP

23

const server = http.createServer(req: IncomingMessage , res: ServerResponse) => {

 const baseURL = `http://${req.headers.host}/`
 const parsedUrl = new URL(req.url, baseURL)

 res.statusCode = 200
 res.setHeader('Content-Type', 'text/html; charset=utf-8')

const name = parsedUrl.searchParams.get("name")
res.end(`<html><head></head><body> Contéudo </body></html>`)
});

Parseando a URL

Nome do parâmetro

Processando dados de um formulário
Obtendo parâmetros de uma requisição POST

• Precisamos utilizar acessar o objeto a URL dentro do objeto que encapsula a
requisição HTTP

24

const server = http.createServer(async(req: IncomingMessage, res: ServerResponse)) => {

 const baseURL = `http://${req.headers.host}/`
 const parsedUrl = new URL(req.url, baseURL)

 const chunks = [];
for await (const chunk of req) {
chunks.push(chunk);

}
const data = Buffer.concat(chunks);
res.end(data.toString())
});

Navegando na

stream de dados

Referências

• Web Design History Timeline

• Common Gateway Interface

• Build Your Own Web Server From Scratch In Node.JS

• How To Create a Web Server in Node.js with the HTTP Module

• 1993: CGI Scripts and Early Server-Side Web Programming

• PERL and CGI Tutorial

25

https://www.webdesignmuseum.org/web-design-history
https://en.wikipedia.org/wiki/Common_Gateway_Interface
https://build-your-own.org/webserver/
https://www.digitalocean.com/community/tutorials/how-to-create-a-web-server-in-node-js-with-the-http-module
https://webdevelopmenthistory.com/1993-cgi-scripts-and-early-server-side-web-programming/
https://www.tutorialspoint.com/perl/perl_cgi.htm

Por hoje é só

26

