& UNIVERSIDADE
i:W®s) FEDERAL DO CEARA

S VNITA FO5 .
g€ CAMPUS QUIXADA

O inicio da interatividade

QXDO0279 - Desenvolvimento de Software para Web 2

Prof. Bruno Gois Mateus (brunomateus@ufc.br)

mailto:brunomateus@ufc.br

Agenda

* |ntroducao
« CGI

* Formularios
e JavaScript

Introducao

Introducao

 Em 1994 o navegador Mosaic ja dava suporte a formularios para envio de
dados para o servidor

* Neles, a entrada do usuario € obtida em elementos de formulario
* O envio do formulario remete essa entrada para o servidor
e O servidor entao processa a entrada e gera uma nova pagina HTML

 Normalmente com novos elementos de formulario para exibicao no
cliente

Introducao

* Diante do potencial apresentado pela web, o time do
desenvolveu naquela época uma
tecnologia que permitiu o uso de paginas dinamicas

 Em 1994, poderiam ser servidas via metodo
. , haquele momento um novo mundo surgia

e Um

Um mundo dinamico

Um mundo dinamico

Common Gateway Interface Programming (CGl)
. , a especificacao do que viriamos a
conhecer como

» Esta tecnologia

* Fol Inventada em 1993 no . dona de um dos mais notaveis servidores
web da eépoca, o NCSA httpd

* No futuro o seu codigo-fonte serviu base para o

A Idela era possibilitar que um programa
pudesse ser iniciado via pagina web e que
seu resultados pudesse ser enviado ao cliente

Um mundo dinamico

Common Gateway Interface Programming (CGl)

* Geralmente, o servidor HTTP tinha uma pasta, que é designada como uma
colecao de arquivos,

» Estes arquivos sao aqueles que podem ser enviados para os clientes

g estende esse sistema, permitindo designar um diretorio dentro da
colecao de documento

e Tambem conhecido como diretorio CGI

* Por exemplo, /usr/local/apache/htdocs/cgi-bin

Um mundo dinamico

Common Gateway Interface Programming (CGil)

Servidor de

Servidor banco de dados [4]

Cliente

A /\
B N
¢l o -
Servidor de
Email [5]

Diretorio CGl [3]

10

Um mundo dinamico

Um Processo, Uma Requisicao, Um Problema

1. Requisicao Chega: O servidor (ex: Apache)

2. Criacao do Processo (O Custo!):
para inicializar do zero para rodar o script

3. Transferéncia de Dados:
1. Entrada:

2. Contexto:

4. Resposta:

5. Destruicao: O processo CGl é imediatamente encerrado e destruido

11

Um mundo dinamico
CGl e Formularios HTML

e Os scripts

 Remontam aos primordios da Web e sao anteriores a propria JavaScript

 Neles, a entrada do usuario é obtida em elementos de formulario

(hormalmente com novos elementos de formulario) para exibicao pelo
cliente

12

Um mundo dinamico

Common Gateway Interface Programming (CGl)

* O script CGl podiam ser escritos em qualquer linguagem de programacao
* Inicialmente eram escritos em C

» Script em Perl foram muitos populares

13

O CGI permitiu que as paginas da web fossem
personalizadas para o usuario ou atualizadas com
iInformacoes em tempo real (ex: contadores de acesso,
formularios de contato, leituras de banco de dados).

14

Um mundo dinamico
Exemplo de uso de CGl

<form action = "/cgi-bin/hello get.cgi"” method = "GET">
First Name: <input type = "text" name = "first name">

Last Name: <input type = "text" name = "last name">
<input type = "submit" wvalue = "Submit">

</form>

Um mundo dinamico
Exemplo de uso de CGl

#!/usr/bin/perl

local (Sbuffer, @pairs, S$pair, S$Sname, S$Svalue, %FORM);
Read 1in text
SENV{'REQUEST METHOD'} =~ tr/a-z/A-Z/;

1f (SENV{ 'REQUEST METHOD'} eq "POST") {
read(STDIN, S$buffer, SENV{ CONTENT LENGTH'});
} else {
Sbuffer = SENV{ ' 'QUERY STRING'};

}

Split information into name/value pairs
@pairs = split(/&/, Sbuffer);

foreach S$pair (@pairs) {

(Sname, S$value) = split(/=/, S$pair);
Svalue =~ tr/+/ /;
Svalue =~ s/%(..)/pack("C", hex(S$1))/eqg;

SFORM{Sname} = Svalue;

$first name = $SFORM{first name};
$last name SFORM{last name};

print "Content-type:text/html\r\n\r\n";

print "<html>";

print "<head>";

print "<title>Hello - Second CGI Program</title>";
print "</head>";

print "<body>";

print "<h2>Hello $first name $last name - Second
CGI Program</h2>";

print "</body>";

print "</html>";

1;

16

Um mundo dinamico

#!/usr/bin/perl

print "Content-type: text/html\n";
print "\n";

my Scount file = "acessos.txt";
my Scurrent count = 0;

open (my Sfh, '+<', Scount file) or die "Nao fol possivel abrir Scount file: S5!";

Trava o arquilvo para evitar que 2 processos o0 modifigque simultaneamente
flock ($Sfth, 2);

Scurrent count = <5fh>;
chomp (Scurrent count); # Remove quebras de linha

Scurrent count = Scurrent count + 1;
seek ($fh, 0, 0); # Volta ao inicio do arquivo (rewind)

17

Um mundo dinamico

Trunca o arquivo (limpa o conteudo)
truncate ($fh, 0);

Escreve o novo valor

print S$Sfh Scurrent count;

Libera o blogqueio do arquivo

flock (Sfh, 8);

close Sfh;

print "<html><head><title>Contador CGI</title></head><body>\n";

print '"<hl>Visitantes tUnicos: S$current count</hl>\n";

print "<p>Este valor foil 1li1do e atualizado diretamente no disco pelo script
Perl.</p>\n";

print "</body></html>\n";

exit 0, # Finaliza o script (e o processo)

18

Um mundo dinamico
O Ponto Fraco do CGl (Escalabilidade)

e Alto Custo de CPU:

o e Intensa para o sistema
operacional

 Falta de Persistencia:

. Tudo tinha que ser refeito.
 Consequeéncia:

* Sites com alto trafego rapidamente se tornavam lentos ou indisponiveis devido a
sobrecarga do servidor web

19

Um mundo dinamico
Exemplo de uso de CGl

* Apesar de ., COMmOo O

JavaScript,
tempos de 1993-1994

e No entanto, ainda em 1994, . Iniclalmente chamada de
, Se destacou e acabou tomando o espaco do CGl

na web dos

20

Processando dados de um
formulario

Processando dados de um formulario

Pratica

» Usando Nodeds crie um formulario de cadastro e verifique se as opcoes
enviadas pelo usuario sao validas
« Caso sejam validas retorne uma pagina com a mensagem de sucesso

« Caso contrario, retorne a pagina do formulario indicando o local do erro

* Implemente o envio dos dados do formulario via GET e POST

22

Processando dados de um formulario

Obtendo parametros de uma requisicao GET

 Precisamos utilizar acessar o objeto a URL dentro do objeto que encapsula a
requisicao HTTP

const server = http.createServer (reqg: IncomingMessage|, res: ServerResponse) =>

const baseURL = " http://${reg.headers.host}/"
const parsedUrl = new URL (reqg.url, baseURL)

res.statusCode = 200
res.setHeader ('Content-Type', 'text/html; charset=utf-8'")

const name = parsedUrl.searchParams.get (|'name™)
res.end(<html><head></head><body> Contéudo </body></html>")

}) s

{

23

Processando dados de um formulario

Obtendo parametros de uma requisicao POST

 Precisamos utilizar acessar o objeto a URL dentro do objeto que encapsula a
requisicao HTTP

const server = http.createServer (async (req: IncomlingMessage| res: ServerResponse)) => {

const baseURL = " http://${reg.headers.host}/"
const parsedUrl = new URL (reg.url, baseURL)

const chunks = [];
for await (const chunk of req) {
chunks.push (chunk) ;
}
const data = Buffer.concat (chunks) ;
res.end(data.toString())

b) s

24

Referencias

 Web Design History Timeline

« Common Gateway Interface
* Build Your Own Web Server From Scratch In Node.JS
 How To Create a Web Server in Node.|s with the HTTP Module

e 1993: CGl Scripts and Early Server-Side Web Programming
 PERL and CGl Tutorial

25

https://www.webdesignmuseum.org/web-design-history
https://en.wikipedia.org/wiki/Common_Gateway_Interface
https://build-your-own.org/webserver/
https://www.digitalocean.com/community/tutorials/how-to-create-a-web-server-in-node-js-with-the-http-module
https://webdevelopmenthistory.com/1993-cgi-scripts-and-early-server-side-web-programming/
https://www.tutorialspoint.com/perl/perl_cgi.htm

Por hoje e soO

