
Prof. Bruno Góis Mateus (brunomateus@ufc.br)

Criando páginas dinâmicas
QXD0279 - Desenvolvimento de Software para Web 2

mailto:brunomateus@ufc.br

Agenda

• Introdução

• Arquitetura MVC

• Fundamentos de Express

• Template Engine

• Middleware

2

Introdução

Introdução

• O script CGI deram início a interatividade na web

• Um mês após o lançamento do JavaScript em 1995, um canadense chamado
Rasmus Lerdof liberou aquilo que ele chamou de Personal Home Page Tools
(PHP Tools)

• Nesta data ainda não se tratava de uma linguagem de script

• Um conjunto de utilitários para facilitar o uso de scripts CGI

• Todos escritos em C

4

“I wrote the same code over and over—basically, CGI
[Common Gateway Interface] scripts written in C. I

wrote code to handle forms, POST data, filtering, and
other common Web things that you have to write in C

when you’re writing CGI programs. It was kind of
tedious and boring, so if I could reduce the amount of

time I had to spend programming, maximize the output,
and get to the solution quicker, then that was my goal

with PHP. I put all my common stuff into a C library,
hacked it into the NCSA [National Center for Computing
Applications] webserver, and then added a templating

system on top of it to let me easily call into it.”
Fonte: Inventing PHP: Rasmus lerdorf

5

https://www.researchgate.net/publication/260584004_Inventing_PHP_Rasmus_lerdorf

Introdução

• A primeira versão consistia de 30 scripts CGI combinados em uma biblioteca
escrito em C

• Um parser analisava o código HTML e substituia tag específicas por
resultados da execução de funções escritas em C

• No entanto, inicialmente houve pouca adoção do PHP

• A segunda versão foi lançada em 1996

• A essa altura o conjunto de ferramentas já estava evoluindo para se tornar
uma linguagem de programação

6

Introdução

• Em 1997, Zeev Surasaki e Andi Gutmans rescreveram o parser que se tornou
a base do PHP 3

• Agora chamado de PHP: Hypertext Preprocessor

• Foi lançada oficialmente em 1998

7

PHP logo [1]

Introdução

8

CGI (Antigo) PHP (Novo Modelo mod_php)

Destruição: Processo é morto após cada
requisição.

Persistência: O interpretador é carregado na memória do
servidor web na inicialização.

Custo Alto: Requer fork() e spawn() em
cada acesso.

Custo Baixo: Execução quase instantânea; elimina o fork()/
spawn() para o PHP.

Linguagem: Scripts externos. Integração: Código PHP é embutido no HTML (< ?php ... ?>).

[2]

O modelo modular (mod_php no Apache)
transformou o PHP no motor de scripting mais

rápido da época, permitindo que sites crescessem
sem quebrar

9

Introdução
Funcionamento básico

10

Internet

HTTP

Banco de dadosCliente

<>
HTML

<?>
PHP

Servidor Web

<html>
<body>
<form action="welcome_get.php" method="POST">
Name: <input type="text" name="name">

E-mail: <input type="text" name="email">

<input type="submit">

</form>
</body>

</html>

Introdução
Exemplo de código PHP

11

<html>
<body>
<form action="welcome_get.php" method="GET">
Name: <input type="text" name="name">

E-mail: <input type="text" name="email">

<input type="submit">

</form>
</body>

</html>

<html>
<body>
Welcome <?php echo $_POST["name"]; ?>

Your email address is: <?php echo $_POST["email"]; ?>

</body>
</html>

<html>
<body>
Welcome <?php echo $_GET["name"]; ?>

Your email address is: <?php echo $_GET[“email"]; ?>

</body>
</html>

Introdução
PHP: Exemplo de uso de estruturas de repetição

Row number 0

• Volvo

• 22

• 18

Row number 1

• BMW

• 15

• 13

Row number 2

• Saab

• 5

• 2

Row number 3

• Land Rover

• 17

• 15

12

<!DOCTYPE html>
<html>
<body>
<?php
$cars = array (
 array("Volvo",22,18),
 array("BMW",15,13),
 array("Saab",5,2),
 array("Land Rover",17,15)
);

for ($row = 0; $row < 4; $row++) {
 echo "<p>Row number $row</p>";
 echo "";
 for ($col = 0; $col < 3; $col++) {
 echo "".$cars[$row][$col]."";
 }
 echo "";
}
?>
</body>
</html>

Introdução
PHP: Mostrando informações armazenadas em um banco de dados

13

<!DOCTYPE html>
<html>
<body>
<?php
$servername = "localhost";
$username = "username";
$password = "password";
$dbname = "myDB";
// Create connection
$conn = new mysqli($servername, $username, $password, $dbname);
// Check connection
if ($conn->connect_error) {
 die("Connection failed: " . $conn->connect_error);
}

$sql = "SELECT id, firstname, lastname FROM MyGuests";
$result = $conn->query($sql);
if ($result->num_rows > 0) {
 echo "<table><tr><th>ID</th><th>Name</th></tr>";
 // output data of each row
 while($row = $result->fetch_assoc()) {
 echo "<tr><td>" . $row["id"]. "</td><td>" . $row["firstname"]. " " . $row["lastname"]. "</td></tr>";
 }
 echo "</table>";
} else {
 echo "0 results";
}
$conn->close();
?>
</body>
</html>

Introdução
🍝 O Problema do "Spaghetti Code"

• Com a velocidade e a facilidade de uso PHP, os desenvolvedores começaram
a construir aplicações complexas

• A possibilidade de misturar código PHP (ou outra linguagem qualquer) com
HTML resultava em código de baixa manutenabilidade

• Muitas vezes as regras de negócio estavam juntas da lógica de visualização

• Surgiu a necessidade de melhorar do código via separação de conceitos

• O MVC, padrão de software arquitetural, tornou-se muito popular nesse
contexto

14

Introdução
JSP: Mostrando informações armazenas em um banco de dados

15

<!DOCTYPE html>
<html>
<head><title>First JSP</title></head>
<body>
 <%
 double num = Math.random();
 if (num > 0.95) {
 %>
 <h2>You'll have a luck day!</h2><p>(<%= num %>)</p>
 <%
 } else {
 %>
 <h2>Well, life goes on ... </h2><p>(<%= num %>)</p>
 <%
 }
 %>
 <a href="<%= request.getRequestURI() %>"><h3>Try Again</h3>
</body>
</html>

Introdução
JSP: Mostrando informações armazenas em um banco de dados

16

<!DOCTYPE html>
<html>
<body>
 <%
 String[] authors = request.getParameterValues("author");
 if (authors != null) {
 %>
 <%@ page import = "java.sql.*" %>
 <%
 Connection conn = DriverManager.getConnection(
 "jdbc:mysql://localhost:3306/ebookshop", "myuser", "xxxx"); // <== Check!
 // Connection conn =
 // DriverManager.getConnection("jdbc:odbc:eshopODBC"); // Microsoft Access
 Statement stmt = conn.createStatement();

 String sqlStr = "SELECT * FROM books WHERE author IN (";
 sqlStr += "'" + authors[0] + "'"; // First author
 for (int i = 1; i < authors.length; ++i) {
 sqlStr += ", '" + authors[i] + "'"; // Subsequent authors need a leading commas
 }
 sqlStr += ") AND qty > 0 ORDER BY author ASC, title ASC";

 System.out.println("Query statement is " + sqlStr);
 ResultSet rset = stmt.executeQuery(sqlStr);
 %>
 <hr>
 <form method="get" action="order.jsp">
 <table border=1 cellpadding=5>
 <tr>
 <th>Order</th>
 <th>Author</th>
 <th>Title</th>
 <th>Price</th>
 <th>Qty</th>
 </tr>
 <%
 while (rset.next()) {
 int id = rset.getInt("id");
 %>
 <tr>
 <td><input type="checkbox" name="id" value="<%= id %>"></td>
 <td><%= rset.getString("author") %></td>
 <td><%= rset.getString("title") %></td>
 <td>$<%= rset.getInt("price") %></td>
 <td><%= rset.getInt("qty") %></td>
 </tr>
 <%
 }
 %>
 </table> …

Arquitetura MVC

Arquitetura MVC
Model - View - Controller

• Padrão arquitetural que se tornou popular em meados de 1970

• Separa a representação da informação da visualização da mesma

• Divide o sistema em três partes interconectadas

• Model

• View

• Controller

18

Arquitetura MVC
Controller

• Realizam a ligação entre o usuário e o sistema

• Devem aguarda por requisições HTTP

• Aceita entradas e converte para comandos para view ou model

• Delega as regras de negócio para modelos e serviços

• Retorna com uma resposta significativa

19

Arquitetura MVC
View

• Representação visual da nossa aplicação (GUI - Graphical User Interface)

• Mostram os dados ao usuário em forma fácil de entender baseado nas suas
ações

• Camada de interação com o usuário

• Deve refletir mudanças ocorridas nos modelos

20

Arquitetura MVC
Model

• Modelo representam o conhecimento do domínio da aplicação

• Gerencia os dados, a lógica e as regras da aplicação

• Independente da interface com o usuário

• Encapsulam os dados do banco de dados

• Tabelas

21

Arquitetura MVC

22

Cliente
Navegador web / app

Container MVC

Controller

View

Model

Requisição HTTP Requisita um/uns objeto(s)

Responde c/ objetos 
adequados

Resposta HTTP

Banco de dados

Renderiza 
os dados

Eventos 
GET, POST, …

Requisições 
ao banco 
de dados

Resposta  
crua

Arquitetura MVC
Quebrando em mais pedaços

• Muito trabalho manual

• Falta de padronização

23

http://minhaapp/…

Rotas

Controller
Model

View

Banco de dados

Serviços

Regras de negócios
 ou

Regras do domínio da aplicação

ControllerModel

Fundamentos de
Express

Fundamentos de Express
Introdução

• “Um framework web para Node, rápido, minimalista e não opinativo”

• Projetado para a criação de aplicações web e APIs utilizando o Node.js

• Inspirado no Sinatra (Ruby)

• Padrão de facto entre as opções de servidor web em Node

25

Fundamentos de Express
História - Timeline

26

2010 2014 2015 2016 2019 2020

• Primeira versão
lançada

• Comprado pela
StrongLoop

• Início do
desenvolvimento
da versão 5.0

• StrongLoop foi
comprada pela
IBM

• IBM repassou os
cuidados para a
Node.js Foundation
Incubator

• Versão atual
4.17.1 foi
lançada

• Versão 5.0.0-
alpha.8

2024

• Versão 5.0.0

2025

• Versão 5.1.0

Fundamentos de Express
Motivação

• Algumas tarefas comuns no desenvolvimento web não são suportadas
diretamente pelo Node

• Gerenciamento de recursos estáticos

• Template engines

• Suporte ao diversos métodos HTTP

• Gerenciamento de Rotas

27

Fundamentos de Express
Características

• Open-source

• Light-weight server-side (minimalista)

• Sistema completo de rotas

• Tratamento de exceções dentro da aplicação

• Gerencia os diversos tipos (method) de requisições HTTP

• Da suporte a diversas “view engines”

28

Fundamentos de Express
Vantagens

• Menor tempo de desenvolvimento

• Alta escalabilidade

• Flexibilidade

• Consistência entre as linguagens de backend e frontend

• Gerenciamento de requisições concorrentes

• Grande comunidade de desenvolvedores

29

Fundamentos de Express
Desvantagens

• Muito trabalho manual

• Falta de padronização

• A flexibilidade do Express é uma espada de dois gumes

• Há pacotes de middleware para resolver quase qualquer problema

• Utilizar os pacotes corretos para cada situação às vezes se torna um
grande desafio

• Não há "caminho certo" para estruturar um aplicativo

30

Fundamentos de Express
Criando um projeto

31

npm init --yes
npm install express
npm install -D typescript
npm install -D @types/node @types/express

npx tsc --init
npm install -D nodemon ts-node

Fundamentos de Express
Configurando os scripts

32

{
 "scripts": {
 "build": "npx tsc",
 "start": "node dist/index.js",
 "dev": "nodemon src/index.ts"
 }
}

Fundamentos de Express
Hello World

33

import express from 'express';
const app = express();
const PORT = 8000;
app.get('/', (req, res) => res.send('Express + TypeScript Server'));
app.listen(PORT, () => {
 console.log(`⚡[server]: Server is running at https://localhost:${PORT}`);
});

Importa o módulo do Express
Cria uma aplicação Express

Cria uma rota

Inicia o servidor

npm run dev

Fundamentos de Express
O objeto app

34

Propriedade/Método Descrição

app.set(name, value) Define propriedades específicas da aplicação

app.get(name) Recupera os valores definidos por meio da chamada app.set()

app.enable(name) Habilitar um configuração na aplicação

app.disable(name) Desabilita uma configuração na aplicação

app.enabled(name) Verifica se uma configuração está habilitada

app.disabled(name) Verifica se uma configuração está desabilitada

app.configure([env], callback) Configura a aplicação condicionalmente de acordo com ambiente de desenvolvimento

app.use([path] Carrega um middleware na aplicação

app.engine(ext, callback) Regista um engine template na aplicação

Fundamentos de Express
O objeto app

35

Propriedade/Método Descrição

app.VERB(path, [callback...], callback) Define uma rota de acordo com o método HTTP e como tratá-la

app.all(path, [callback...], callback) Define uma rota para todos método HTTP e como tratá-la

app.locals Armazena todas as variáveis visíveis em views

app.render(view, [options], callback) Renderiza um view da aplicação

app.routes A lista de todas as rotas da aplicação

app.listen Realiza a ligação e passa a esperar por conexões

Fundamentos de Express
O objeto request

36

Propriedade/Método Descrição

req.params Armazena os valores do parâmetros nomeados na rotaparameters

req.params(name) Retorna o valor de parameters nomeados em rotas de GET ou POST

req.query Armazena os valores enviados via GET

req.body Armazena os valores enviados via POST

req.files Armazena arquivos enviados via formulário de upload

req.route Prover detalhes da rota atual

req.cookies Armazena os valores dos cookies

Fundamentos de Express
O objeto request

37

Propriedade/Método Descrição

req.ip O endereço IP do cliente

req.path O path requisitado

req.host O hostname contido no cabeçalho HTTP

req.protocol O protocolo utilizado para realizar a requisição

req.secure Verifica se a conexão é segura

req.url A url requisitada junto com os parâmetros enviados na query

Fundamentos de Express
O objeto response

38

Propriedade/Método Descrição

res.status(code) Define o código HTTP da resposta

res.set(field, [value]) Define campos no cabeçalho HTTP

res.get(header) Recupera informação do cabeçalho HTTP

res.cookie(name, value, [options]) Define um cookie no cliente

res.clearCookie(name, Deleta um cookie no cliente

res.redirect([status], url) Redireciona o cliente para uma URL

res.location O valor da localização presente no cabeçalho HTTP

Fundamentos de Express
O objeto response

39

Propriedade/Método Descrição

res.send([body|status], [body]) Envia uma reposta HTTP com um código de resposta opcional

res.json([status|body], [body]) Envia um JSON como resposta HTTP com um código de resposta opcional

res.type(type) Define o tipo da media da resposta HTTP

res.attachment([filename]) Informa presença de um anexo no cabeçalho HTTP Content-Disposition

res.sendfile(path, [options], [callback]]) Envia um arquivo para o cliente

res.download(path, [filename], [callback]) Solicita que o cliente baixe um arquivo

res.render(view, [locals], callback) Renderiza uma view

Fundamentos de Express
Exemplo do uso de rotas

• API de usuários

• Listar todos os usuários

• Adicionar novos usuários

• Mostrar os detalhes de um usuário

• Editar/Atualizar um usuário

• Remover um usuário

40

Fundamentos de Express
Exemplo do uso de rotas

41

Tarefa/Funcionalidade HTTP Method URL

Listar usuários GET /users

Formulário p/ adicionar um usuário GET /users/add

Adicionar um usuário POST /users

Formulário p/ editar um usuário GET /users/:id

Atualizar um usuário POST /users/:id

Remover um usuário GET /users/remove/:id

Fundamentos de Express
Rotas

42

import express from 'express';
const app = express();
const PORT = 8000;
app.get('/', (req, res) => res.send('Express + TypeScript Server'));
app.get('/usuarios', (req, res) => ???);
app.get('/usuarios/novo', (req, res) => ???);
app.post('/usuarios', (req, res) => ???);
app.get('/usuarios/:id', (req, res) => ???);
app.get('/usuarios:id/editar', (req, res) => ???);
app.put('/usuarios/:id', (req, res) => ???);
app.delete('/usuarios/:id', (req, res) => ???);
app.listen(PORT, () => {
 console.log(`⚡[server]: Server is running at https://localhost:${PORT}
`);
});

Fundamentos de Express
Rotas e parâmetros

• Inevitavelmente será preciso enviar informações via url

• Id de uma entidade no banco de dados

• Informações para filtrar os dados do banco de dados

• Informação para realizar a paginação do resultado de uma consulta

43

Route path: /users/:userId/books/:bookId
Request URL: http://localhost:3000/users/34/books/8989
req.params: { "userId": "34", "bookId": "8989" }

Route path: /flights/:from-:to
Request URL: http://localhost:3000/flights/LAX-SFO
req.params: { "from": "LAX", "to": "SFO" }

Fundamentos de Express
Roteadores

• Frequentemente chamados de mini-app

• Utilizados para lidar com rotas de maneira modular

44

import express from 'express';
const router = Router()
router.get('/', (req, res) => ???);
router.get('/novo', (req, res) => ???);
router.post('/', (req, res) => ???);
router.get('/:id', (req, res) => ???);
router.get(':id/editar', (req, res) => ???);
router.put('/:id', (req, res) => ???);
router.delete('/:id', (req, res) => ???);

module.exports = router

Fundamentos de Express
Roteadores

• Frequentemente chamados de mini-app

• Utilizados para lidar com rotas de maneira modular

45

import express from 'express';
import userRouter from './routes/userRoutes'

const app = express();
const PORT = 8000;

app.get('/', (req, res) => res.send('Express + TypeScript Server’));

app.use('/usuarios', userRouter)

app.listen(PORT, () => {
 console.log(`⚡[server]: Server is running at https://localhost:${PORT}
`);
});

Fundamentos de Express
Roteadores

46

/GET

/POST

/download/:idGET

Página principal

Autenticação do usuário

Envia o arquivo

Requisição HTTP

/usuariosGET

/usuariosPOST

/usuarios/:idGET

Requisição HTTP

Primeiro router

Usuário router

Resposta HTTP

Template Engine

Template Engine
Introdução

• Mesmo com a arquitetura MVC, o componente View precisava de uma
maneira de:

• Receber Dados:

• Obter as informações processadas pelo Controller

• Ex: uma lista de usuários, detalhes de um produto.

• Renderizar:

• Inserir esses dados na estrutura HTML.

48

Template Engine
Introdução

• Também chamados de template processor ou template parser

• Combinam um template e dados para produzirem documentos ou até mesmo
programas

• No contexto do desenvolvimento web, servem para facilitar a criação de
páginas HTML(view) de forma mais simples e organizada

• Majoritariamente usadas em aplicação que não são construídas como APIs

49

Template Engine
Uso na web

• Template Engines foram adotados para separar de forma eficaz as camadas
de view e controllers

• A linguagem de escrita dos template é chamada de template language

• É uma linguagem insuficiente para lidar com regras de negócio

• É impossível realizar uma consulta a um banco de dados no meio do
código HTML

50

Template Engine
Funcionamento

• É composto dos seguintes elementos:

• Modelo de dados

• Banco de dados relacional, arquivo XML, planilhas

• Arquivo de template

• Template engine

• Responsável por:

• Conectar-se ao modelo de dados

• Processar os arquivos de template
51

Banco de dados

< >

HTML

{{x}}

HBS

Template Engine
Uso na web

• Em um determinado momento vários template engines surgiram, alguns dos
mais populares são/foram:

52

[4]
Pug[5] [6]

[7]

Thymeleaf [8] Liquid [9] Blade [10]

Template Engine
Exemplo - GitPages = Jekyll + Liquid

53

title: Notas de aula

Notas de aula

{% for file in site.static_files %}
 {% if file.extname == '.pdf'%}
- [Aula {{ file.basename | replace: "-", " "}}]({{ file.path }})
 {% endif %}
{% endfor %}

Template Engine
Exemplo - Handlebars ou hbs

54

{{#each pokemons}}
 <div class="col-3">
 <div class="card">

 <div class="card-body">
 <h5 class="card-title">{{nome}}</h5>
 {{#each tipos}}
 {{this}}
 {{/each}}
 Mais detalhes
 </div>
 </div>
 </div>
{{/each}}

Template Engine
Funcionamento

55

Internet

HTTP

Banco de dadosCliente

< >

HTML

{{x}}

HBS

Servidor Web

Template Engine
Configurando o Handlebars como engine no Express

56

npm install express-handlebars
mkdir src/views
mkdir src/views/layouts

import { engine } from 'express-handlebars'
import path from 'path'

const app = express()

app.set('view engine', 'hbs');
app.engine('hbs', engine({
 extname: '.hbs'
}));

app.set('views', path.join(__dirname, '/views'));

Determina engine que será utilizada

Determina a extensão dos arquivos que serão utilizados

Indica onde estão localizados os

arquivos de view

Template Engine
Configurando o layout principal

• Salvar conteúdo abaixo na pasta src/views/layouts como main.hbs

57

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Example App</title>
</head>
<body>

 {{{body}}}

</body>
</html>

Place holder que indica onde

 o conteúdo de um view será inserido

Template Engine
Renderizando uma view

58

app.get('/', function (req, res, next) {
 res.render('home', {
 showTitle: true,
 });
});

Indica que o arquivo home.hbs localizado

 na pasta /src/views deve ser renderizado

Variável enviada para dentro do arquivo de view

Referências

• 1995: PHP Quietly Launches as a CGI Scripts Toolset

• PHP Examples

• Java Server-side Programming Getting started with JSP by Examples

• GUI Architectures

• Mastering MVC Architecture: A Comprehensive Guide for Web

Developers

• MVC Pattern in NodeJS and express, old but gold

• MVC (Laravel) where to add logic

59

https://webdevelopmenthistory.com/1995-php-quietly-launches-as-a-cgi-scripts-toolset/
https://www.w3schools.com/php/php_examples.asp
https://www3.ntu.edu.sg/home/ehchua/programming/java/JSPByExample.html
https://martinfowler.com/eaaDev/uiArchs.html#ModelViewController
https://www.linkedin.com/pulse/mastering-mvc-architecture-comprehensive-guide-web-developers-garud
https://www.linkedin.com/pulse/mastering-mvc-architecture-comprehensive-guide-web-developers-garud
https://medium.com/@jonoyanguren/mvc-pattern-in-nodejs-and-express-old-but-gold-46c21bee365a
https://stackoverflow.com/questions/23595036/mvc-laravel-where-to-add-logic?source=post_page-----fbf20333baa6--------------------------------

Referências

• How to set up TypeScript with Node.js and Express

• O que é Template Engine?

• What are template engines?

• Wikipedia: Template processor

• Web template system

• PHP is A-OK for Templating

• A Step By Step Guide To Using Handlebars With Your Node js App

60

https://blog.logrocket.com/how-to-set-up-node-typescript-express/
https://www.treinaweb.com.br/blog/o-que-e-template-engine
https://www.educative.io/answers/what-are-template-engines
https://en.wikipedia.org/wiki/Template_processor
https://en.wikipedia.org/wiki/Web_template_system
https://css-tricks.com/php-is-a-ok-for-templating/
https://waelyasmina.medium.com/a-guide-into-using-handlebars-with-your-express-js-application-22b944443b65

Por hoje é só

61

