
Prof. Bruno Góis Mateus (brunomateus@ufc.br)

Criando uma API REST
QXD0279 - Desenvolvimento de Software para Web 2

mailto:brunomateus@ufc.br

Agenda

• Os princípios da arquitetura REST

• Projetando uma API REST

• Middlewares

2

Os princípios da arquitetura
REST

Os princípios da arquitetura REST
Cliente-Servidor

• Trata da separação de responsabilidades

• Cliente e Servidor podem evoluir de forma independente

• Independentemente das tecnologias e linguagens utilizadas

• O contrato entre eles se mantém intacto

4

Os princípios da arquitetura REST
Interface Uniforme (Uniform Interface)

• Toda comunicação entre clientes e servidores se da por meio de interfaces

• Se algum componente não segue o padrão estabelecido a comunicação pode
falhar

• Para estar conforme com o este princípio 4 restrições devem ser seguidas

• Identificação de recursos

• Manipulação de recursos através de representações

• Mensagens auto descritivas

• Hypermedia as the engine of application state (HATEOAs)
5

Os princípios da arquitetura REST
Interface Uniforme (Uniform Interface)

• Identificação de recursos

• Cada recurso distinto deve ser unicamente identificado por meio de uma
URI

• Manipulação de recursos através de representações

• Clientes manipulam representações de recursos que podem ser
representados de forma diferentes. Ex: HTML, JSON, XML

• O formato é apenas a forma de interação

6

Os princípios da arquitetura REST
Interface Uniforme (Uniform Interface)

• Mensagens auto descritivas

• Cada representação de um recurso deve conter as informações necessárias para
descrever como aquela mensagem deve ser processada

• Deve conter informações sobre as ações que os clientes podem tomar em relação
ao recurso desejado

• Hypermedia as the engine of application state (HATEOAs)

• A representação de um estado de um recurso deve conter links para outros
recursos relacionados

• Desta forma, um cliente pode encontrar e navegar entre recursos

7

Os princípios da arquitetura REST
HATEOAs

• =

8

GET /accounts/12345 HTTP/1.1
Host: bank.example.com

HTTP/1.1 200 OK

{
 "account": {
 "account_number": 12345,
 "balance": {
 "currency": "usd",
 "value": 100.00
 },
 "links": {
 "deposits": "/accounts/12345/deposits",
 "withdrawals": "/accounts/12345/withdrawals",
 "transfers": "/accounts/12345/transfers",
 "close-requests": "/accounts/12345/close-requests"
 }
 }
}

Os princípios da arquitetura REST
Sistema em camadas

• Não assuma que o cliente está se conectado
diretamente ao servidor

• A API deve ser projetada de forma que nem o
cliente nem o servidor saibam se eles estão se
comunicando diretamente ou com um
intermediário

• Ex: Múltiplas camadas de servidores.

9Exemplo de sistema em camadas [6]

Os princípios da arquitetura REST
Cache

• O servidor deve informar a cacheability dos dados de cada resposta

• O cache pode existir em qualquer lugar da rede que liga o cliente ao servidor:

• Client side (navegador), Server side e Intermediary side (CDN)

• De forma geral reduz o custo da web (reduz o tráfego na rede)

• Reduz a latência percebida pelo cliente

• Aumenta a disponibilidade e confiablidade da aplicação

• Aumenta a escalabilidade da aplicação
10

Os princípios da arquitetura REST
Sem estados (Stateless)

• Toda requisição realizada deve conter toda a informação necessária para que
ela seja entendida

• O servidor não deve possuir conhecimento sobre requisições feitas
previamente

• O servidor não de armazenar informações sobre as requisições

• A complexidade de gerir os estados deve ficar no cliente

• O servidor pode atender um número muito maior de clientes

11

Os princípios da arquitetura REST
Código sobre demanda (Opcional)

• Na maioria das vezes o servidor responde com recursos estáticos, no
entanto, em certos casos o servidor deve poder incluir código executável

• Java Applets

• No entanto, isso gera um acoplamento entre o cliente e o servidor

• O cliente precisa entender o código enviado

• Por essa razão este é o único opcional

12

Os princípios da arquitetura REST
REST vs RESTful

• Uma API Web em conformidade com a arquitetura REST é uma API RESTful

• APIs REST bem projetadas podem atrair desenvolvedores clientes para usar
serviços da web

• No mercado aberto de hoje, onde os serviços web rivais competem por
atenção, um design de API REST esteticamente agradável é obrigatório

• Sugestão de leitura: Why HATEOAS is useless and what that means for REST

13

https://medium.com/@andreasreiser94/why-hateoas-is-useless-and-what-that-means-for-rest-a65194471bc8

Projetando uma API REST

Projetando uma API REST
O formato da URI

• A barra (/) deve ser utilizada para indicar hierarquia entre recursos

• A barra (/) não dever ser utilizada no final das URIs

15

http://api.canvas.restapi.org/shapes/polygons/quadrilaterals/squares

http://api.canvas.restapi.org/shapes/

http://api.canvas.restapi.org/shapes

Projetando uma API REST
O formato da URI

• A URI preferencialmente devem ser escritas em letras minúsculas

• A extensão de arquivos não devem aparecer nas URIs

16

http://api.example.restapi.org/my-folder/my-doc

HTTP://API.EXAMPLE.RESTAPI.ORG/my-folder/my-doc

http://api.example.restapi.org/My-Folder/my-doc

São a URI

São URIs diferentes,

nos levam a recursos diferentes

Projetando uma API REST
Arquétipos de Recursos (Resource Archetypes)

• Uma API REST possui 4 arquétipos de recursos

• Documento (Document)

• Coleção (Collection)

• Loja (Store)

• Controlador (Controller)

17

Projetando uma API REST
Documento

• Algo singular, como uma instância de objeto ou um registro do banco de
dados

18

http://api.soccer.restapi.org/leagues/seattle
http://api.soccer.restapi.org/leagues/seattle/teams/trebuchet
http://api.soccer.restapi.org/leagues/seattle/teams/trebuchet/players/mike

Projetando uma API REST
Coleção

• Diretório ou coleção de recursos

• Os clientes podem propor a adição de um novo recurso

19

http://api.soccer.restapi.org/leagues
http://api.soccer.restapi.org/leagues/seattle/teams
http://api.soccer.restapi.org/leagues/seattle/teams/trebuchet/players

Projetando uma API REST
Loja

• Uma Store nunca gera uma nova URI

• Cada URI de Store é escolhida pelo cliente

• Repositório escolhido gerenciado pelos clientes

20

PUT /users/1234/favorites/alonso

Projetando uma API REST
Controlador

• São similares a funções executáveis

• Possuem parâmetros e retorno, i.e., entrada e saída

• Em geral o nome do controllador faz parte do último segmento da URI

21

POST /alerts/245743/resend

Projetando uma API REST
URI Path Design

22

{ collection - c } { store - s } { document - d }/ /

c

d

s
Contains s

Stores d

Projetando uma API REST
URI Path Design

• Nomes no singular devem ser usados para nomear documentos

• Nomes no plural devem ser usados para nomear coleções

• Nomes no plural devem ser usados para nomear stores

• Um verbo deve ser utilizado para nomear um controller

23

PUT /users/1234/favorites/alonso
POST http://api.college.org/students/register

Projetando uma API REST
URI Path Design

• Os nomes de funções CRUD não devem ser usados em URIs

24

DELETE /users/1234

GET /deleteUser?id=1234
GET /deleteUser/1234
DELETE /deleteUser/1234
POST /users/1234/delete

Projetando uma API REST
URI Query Design

• A query string pode ser utilizada para filtrar collections or stores

• A query string deve ser utilizada para paginar os resultados de collections ou
stores

25

GET /users?role=admin
GET /users?pageSize=25&pageStartIndex=50

Projetando uma API REST
Interagindo com o HTTP

26

Finalidade HTTP Method

Recuperar a representação de um recurso GET

Criar recurso / Executar um controller POST

Atualizar um recurso PUT

Excluir um recurso DELETE

Recuperar os metadados associados a um recurso HEAD

Recuperar os metadados associados a um recurso que descrevem
as possíveis interações

 OPTIONS

Projetando uma API REST
HEAD

27

Request Line

Cabeçalhos

Linha em branco

Corpo da mensagem

GET /movies/1234 HTTP/1.1

Host: meusite.com.br
User-Agent: Mozilla/5.0
Accept: text/html
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300

HTTP/1.1 200 OK

Date: Sun, 18 Oct 2009 08:56:53 GMT
Server: Apache/2.2.14 (Win32)
Last-Modified: Sat, 20 Nov 2004 07:16:26 GMT
Accept-Ranges: bytes
Content-Length: 44
Connection: close
Content-Type: text/html

<html>
<body>
 <input type="hidden" id="id" value="1234"/>

HEAD /movies/1234 HTTP/1.1

Projetando uma API REST
Options

28

OPTIONS /movies/1234 HTTP/1.1

Host: meusite.com.br
User-Agent: Mozilla/5.0
Accept: text/html
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300

HTTP/1.1 200 OK

Date: Sun, 18 Oct 2009 08:56:53 GMT
Server: Apache/2.2.14 (Win32)
Last-Modified: Sat, 20 Nov 2004 07:16:26 GMT
Accept-Ranges: bytes
Content-Length: 44
Connection: close
Allow: GET, PUT, DELETE

Se comunicando com uma API REST
Códigos de status HTTP

Grupo Código Quando

1xx - Respostas informativas Raramente são utilizadas Raramente são ut i l izadas

2xx - Envias em
caso de sucesso

200 OK Código mais ut i l izado. Requis ição processada
com sucesso

201 Created Indica que um novo registro foi cr iado. Usando
em respostas a requis ições POST

202 Accepted Indica que uma ação assíncrona inic iou com
sucesso

204 No content Usado quando o corpo é intencionalmente vazio.
Usado com requis ições PUT, POST e DELETE.

29

Se comunicando com uma API REST
Códigos de status HTTP

Grupo Código Quando

3xx - Define respostas
de redirecionamento

301 Moved Permanently Informa que o recurso A agora é o recurso B

304 Not modified Resposta ut i l izada em cenários de cache. Informa ao
cl iente que a resposta não foi modif icada. Portanto, o
c l iente pode usar a mesma versão em cache da
resposta

307 Temporary redirect Indica que a API não i rá processar a requis ição. Uma
nova requis ição deve ser feita para URI indicada no
Header

30

Se comunicando com uma API REST
Códigos de status HTTP

Grupo Código Quando

4xx - Informa erros
no lado do cliente

400 Bad Request Indica que o servidor não conseguiu entender a
requis ição, devido a sua s intaxe ou estrutura invál ida

401 Unauthorized Informa que existe uma camada de segurança para
recurso sol ic i tado, e que as credenciais informadas
requis ição estão incorretas

403 Forbidden Informa que as credenciais foram reconhecidas ao mesmo
tempo que indica que o cl iente não tem permissão para
acessar o recurso

31

Se comunicando com uma API REST
Códigos de status HTTP

Grupo Código Quando

4xx - Informa erros
no lado do cliente

404 Not Found Informa que o servidor não encontrou o recurso
sol ic i tado

405 Method Not Allowed Informa que o recurso específ ico não suporta o método
HTTP ut i l izado

406 Not Acceptable Indica que o cl iente requis i tou dados em um formato de
media não aceito

429 Too Many Requests Não é tão comum, mas pode ser ut i l izar para informar
que o cl iente excedeu o l imite permit ido de requis ições

32

Se comunicando com uma API REST
Códigos de status HTTP

Grupo Código Quando

5xx - Enviadas quando
ocorre um erro no lado
do servidor

500 Internal Server Error Erro mais genérico do grupo. Informa que o
servidor encontrou um cenário inesperado de erro
com o qual não soube l idar

503 Service Unavailable Normalmente é ut i l izado para informar que o
servidor está fora do ar, em manutenção ou
sobrecarregado

33

Se comunicando com uma API REST
Headers

• Proveem informações sobre o recurso requisitados

• Indicam algo sobre a mensagem que está sendo enviada

• Regras

• Content-Type deve ser utilizado

• Content-Length deve ser utilizado

• Last-Modified deve ser utilizado em respostas

• Cache-Control, Expires e Date devem ser usados promover o uso de cache
34

Se comunicando com uma API REST
Headers

Request Header Response Header Effect Exemplos

Accept Content-Type Tipo de media appl icat ion/json

text/html

mult ipart/ form-data

Accept-Language Content-Language Idioma en-US, f r ;q=0.9

en-GB

Accept-Encoding Content-Encoding Compressão gzip, br

compress

def late

identity
Accept-Charset Content-Type charset parameter Codif icação dos caracteres text/html; charset=utf-8

35

Projetando uma API REST
Accept & Content-Type

36

GET /movies/1234 HTTP/1.1

Host: meusite.com.br
User-Agent: Mozilla/5.0
Accept: text/html
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300

HTTP/1.1 200 OK

Date: Sun, 18 Oct 2009 08:56:53 GMT
Server: Apache/2.2.14 (Win32)
Last-Modified: Sat, 20 Nov 2004 07:16:26 GMT
Accept-Ranges: bytes
Content-Length: 44
Connection: close
Content-Type: application/html

<html>
<body>
 <input type="hidden" id="id" value="1234"/>

Host: meusite.com.br
User-Agent: Mozilla/5.0
Accept: application/json
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300

Date: Sun, 18 Oct 2009 08:56:53 GMT
Server: Apache/2.2.14 (Win32)
Last-Modified: Sat, 20 Nov 2004 07:16:26 GMT
Accept-Ranges: bytes
Content-Length: 44
Connection: close
Content-Type: application/json

{
 "id": 1234,
 "title": "Inception",
 "quotes": [
 "Dreams feel real while we're in them.

Middlewares

Middlewares

• É uma função que trata uma requisição ou uma resposta HTTP em uma
aplicação Express

• Pode manipular a requisição ou a resposta

• Pode realizar uma ação isolada

• Pode finaliza o fluxo da requisição ao retornar uma resposta

• Pode passar o controle da requisição ao próximo middleware

• Para carregar um middleware chamamos: app.use()

38

Middlewares

• Uma aplicativo Express é essencialmente uma série de chamadas a
middlewares

• Tais funções que têm acesso a:

• Ao objeto de requisição (req),

• Ao objeto de resposta (res)

• À próxima função de middleware no ciclo de solicitação-resposta da
aplicação

• Comumente indicada por uma variável chamada next
39

app.use(function(req, res, next) {
 console.log('Request from: ' + req.ip);
 next();
 });

Middlewares
Tipos de Middleware

• Em uma aplicação Express podemos ter diversos tipos de middlewares

• Application-level middleware

• Router-level middleware

• Error-handling middleware

• Built-in middleware

• Third-party middleware

40

Middlewares
Application-level middleware

• Muito trabalho manual

• Falta de padronização

41

const express = require('express')
const app = express()

app.use((req, res, next) => {
 console.log('Time:', Date.now())
 next()
})

Middlewares
Router-level middleware

• Funcionam da mesma maneira que application level middleware

• Estão ligado a um Router do Express

42

const express = require('express')
const app = express()
const router = express.Router()

// a middleware function with no mount path. This code is executed for every
request to the router
router.use((req, res, next) => {
 console.log('Time:', Date.now())
 next()
})

Middlewares
Error-handling middleware

• Sempre recebem quatro argumentos

• Mesmo quando algum deles não é necessário

• Sem os argumentos, ele não será capaz de lidar com os erros

43

app.use((err, req, res, next) => {
 console.error(err.stack)
 res.status(500).send('Something broke!')
})

Middlewares
Built-in middleware

• São middleware que são disponíveis no código do Express

• Exemplos:

• express.static

• express.json (a partir do Express 4.16.0+)

• express.urlencoded (a partir do Express 4.16.0+)

44

app.use((err, req, res, next) => {
 console.error(err.stack)
 res.status(500).send('Something broke!')
})

Middlewares
Built-in middleware

45

const options = {
 dotfiles: 'ignore',
 etag: false,
 extensions: ['htm', 'html'],
 index: false,
 maxAge: '1d',
 redirect: false,
 setHeaders: function (res, path, stat) {
 res.set('x-timestamp', Date.now())
 }
}

app.use(express.static('public', options))

Middlewares
Third-party

• São criados por terceiros para adicionar novas funcionalidades ao Express

• É necessário instalar o módulo Node.js para ter acesso a funcionalidade

46

const express = require('express')
const app = express()
const cookieParser = require('cookie-parser')

// load the cookie-parsing middleware
app.use(cookieParser())

$ npm install cookie-parser

Middlewares
Disponíveis no Express

47

Middleware Descrição

router Sistema de rotas da aplicação

morgan Realiza o log das requisições HTTP

compression Comprime as respostas HTTP

json Realizar o parse de application/json

urlencode Realiza o parse de application/x-www-form-urlencoded

multer Realiza o parse de multipart/form-data

bodyParser Realiza o parse do body usando os middlewares json, url encoded e multipart

timeout Defina um período de tempo limite para o processamento da solicitação HTTP

Middlewares
Disponíveis no Express

48

Middleware Descrição

cookieParser Realizar o parse de cookies

session Da suporte a sessões

cookieSession Da suporte a cookie de sessão

responseTime Grava o tempo de resposta do servidor

serve-static Configura o diretório de recursos estáticos do servidor

serve-favicon Serve o favicon do website

errorHandler Gera o stacktrace de erros utilizando HTML

3. O Express trata a 
requisição e 

devolve a resposta

Middleware

Middlewares
Fluxo da requisição

• Existe apenas um ponto de entrada em aplicações Node + Express

49

favicon

morgan

compression

json

cookieParser

apicache

router

Cliente
(Navegador,
aplicação

móvel, etc..)

Servidor
HTTP em

NODE

Aplicação em
Express

1. Cliente realiza

uma requisição

2. O servidor HTTP 
envia a requisição 

para o Express

5. O servidor HTTP 
envia a resposta 

para o cliente 4. A funções respondem  
a requisição

Referências

• O que é uma API (interface de programação de aplicações)?

• REST API Design Rulebook, Mark Masse

• O que é a API REST e como ela difere de outros tipos?

• What is REST

• What is a REST API?

• What is the difference between POST and PUT in HTTP?

50

https://aws.amazon.com/pt/what-is/api/
https://appmaster.io/pt/blog/o-que-e-a-api-rest-e-como-ela-difere-de-outros-tipos
https://restfulapi.net/
https://www.ibm.com/topics/rest-apis
https://sentry.io/answers/what-is-the-difference-between-post-and-put-in-http/

Referências

• Why HATEOAS is useless and what that means for REST

• Restful API guidelines

• Exploring REST API Architecture

• REST API vs RESTful API: Which One Leads in Web App Development?

• A anatomia de uma API RESTful

• API REST: o que é e como montar uma API sem complicação?

• Using Middleware
51

https://medium.com/@andreasreiser94/why-hateoas-is-useless-and-what-that-means-for-rest-a65194471bc8
https://sandywits.medium.com/restful-api-guidelines-d1ac255b7953
https://danmartensen.svbtle.com/exploring-rest-api-architecture
https://radixweb.com/blog/rest-vs-restful-api
https://thiagolima.blog.br/a-anatomia-de-uma-api-restful-80df2aca158e
https://blog.betrybe.com/desenvolvimento-web/api-rest-tudo-sobre/
https://expressjs.com/en/guide/using-middleware.html

Por hoje é só

52

