UNIVERSIDADE
¢ FEDERAL po CEARA

"'N....-—"" D

B & CAMPUS QUIXADA

Criando uma API REST

QXDO0279 - Desenvolvimento de Software para Web 2

Prof. Bruno Gois Mateus (brunomateus@ufc.br)

mailto:brunomateus@ufc.br

Agenda

e Os principios da arquitetura REST
 Projetando uma API REST

e Middlewares

Os principios da arquitetura
REST

Os principios da arquitetura REST

Cliente-Servidor

» Trata da separacao de responsabilidades
. e podem evoluir de forma independente
* |ndependentemente das

e O contrato entre eles se mantem intacto

Os principios da arquitetura REST

Interface Uniforme (Uniform Interface)

 Toda comunicacao entre e se da por meio de interfaces

* Se algum componente nao segue o padrao estabelecido a comunicacao pode
falhar

* Para estar conforme com o este principio devem ser seguidas

Os principios da arquitetura REST

Interface Uniforme (Uniform Interface)
« Cada deve ser unicamente identificado por meio de

* Clientes manipulam representacoes de que podem ser
representados de forma diferentes. Ex: HTML, JSON, XML

Os principios da arquitetura REST

Interface Uniforme (Uniform Interface)

e Cada representacao de um recurso deve conter as informacoes necessarias para
descrever como aquela mensagem deve ser processada

* Deve conter informacoes sobre as acoes que os clientes podem tomar em relacao
ao recurso desejado

* A representacao de um estado de um

 Desta forma, um cliente pode encontrar e navegar entre recursos

Os principios da arquitetura REST
HATEOAs

GET /accounts/12345 HTTP/1.1 HTTP/1.1 200 OK
Host: bank.example.com

"account": {
"account number": 12345,
"balance": {
"currency': "usd",
"value": 100.00

¥

"links": {
"deposits": "/accounts/12345/deposits”,
"withdrawals": "/accounts/12345/withdrawals",
"transfers": "/accounts/12345/transfers”,
"close-requests": "/accounts/12345/close-requests"”

}

Os principios da arquitetura REST

Sistema em camadas

~ . s , . DNS
« Nao assuma que o cliente esta se conectado e l\ I
diretamente ao servidor S~ on |
* A APl deve ser projetada de forma que nem o oRCEEnCEr
nem o saibam se eles estao se

comunicando diretamente ou com um SR

intermediario

« Ex: Multiplas camadas de . Write AP ” Read AP [|
Memory Cache

Exemplo de sistema em camadas [6] 9

Os principios da arquitetura REST
Cache

* O servidor deve informar a dos dados de cada resposta
* O cache
* Client side (navegador), Server side e Intermediary side (CDN)
* De forma geral reduz o custo da web (reduz o trafego na rede)
 Reduz a percebida pelo cliente
 Aumenta da aplicacao

 Aumenta a da aplicacao

10

Os principios da arquitetura REST

Sem estados (Stateless)

* Toda requisicao realizada deve conter toda a informacao necessaria para que
ela seja entendida

e O nao deve possuir conhecimento sobre requisicoes feitas
previamente
+ O nao de armazenar informacoes sobre as requisicoes

A complexidade de gerir os estados deve ficar no

e O servidor pode atender um numero muito maior de

11

Os principios da arquitetura REST

Codigo sobre demanda (Opcional)

 Na maioria das vezes o responde com
entanto, em certos casos o deve poder Incluir

e Java Applets
 No entanto, iIsso gera um acoplamento entre o cliente e o servidor
e O cliente precisa entender o codigo enviado

e Por essa razao este é o unico opcional

. NOo

12

Os principios da arquitetura REST
REST vs RESTHful

« Uma APl Web em conformidade com a arquitetura é uma

 APIs REST bem projetadas podem atrair desenvolvedores clientes para usar
servicos da web

* No mercado aberto de hoje, onde 0s servicos web rivais competem por
atencao, um design de APl REST esteticamente agradavel é obrigatorio

e Sugestao de leitura:

13

https://medium.com/@andreasreiser94/why-hateoas-is-useless-and-what-that-means-for-rest-a65194471bc8

Projetando uma APl REST

Projetando uma API REST

O formato da URI

A barra (/) deve ser utilizada para indicar hierarquia entre recursos

http://api.canvas.restapi.org/shapes/polygons/quadrilaterals/squares

A barra (/) nao dever ser utilizada no final das URIs

http://api.canvas.restapi.org/shapes/

X

http://api.canvas.restapi.org/shapes

15

Projetando uma API REST

O formato da URI

* A URI preferencialmente devem ser escritas em letras minusculas

http://api.example.restapi.org/my-folder/my-doc :]
HTTP://API.EXAMPLE.RESTAPI.ORG/my-folder/my-doc

http://api.example.restapi.org/My-Folder/my-doc

A extensao de arquivos nao devem aparecer nas URIs

16

Projetando uma API REST

Arquetipos de Recursos (Resource Archetypes)

 Uma API REST possui 4 arquétipos de recursos
 Documento ()
 Colecao ()
e Loja ()

* Controlador ()

17

Projetando uma API REST

Documento

* Algo singular, como uma

a)
ct

oD

tp://api.soccer.restapi.org/]
tp://api.soccer.restapi.orqg/]

leagues/seatt]

leagues,/seattl

ou um

e
e/teams/trebuchet

tp://apil.soccer.restapi.orqg/]

_eagues/seatt]

e/teams/trebuchet/players/mike

18

Projetando uma API REST

Colecao

e Diretorio ou

»)
t ¢t

oD

* Os clientes podem propor

de recursos

a adicao de um novo recurso

tp://api.soccer.restapi.org

tp://apl.soccer.restapi.org/-:

_.eagues seattle

tp://apil.soccer.restapi.orqg/]

leagues/seattle/teams/trebuchet

19

Projetando uma API REST

Loja
« Uma nunca gera uma nova URI
 Cada URI de e escolhida pelo cliente

* Repositdrio escolhido gerenciado pelos clientes

PUT /users/1234/favorites/alonso

20

Projetando uma API REST

Controlador

e Sao similares a
 Possuem parametros e retorno, i.e., entrada e saida

 Em geral o nome do controllador

POST /alerts/245743,/resend

21

Projetando uma API REST

URI Path Design

{collection-c} / {store-s} / { document - d }

| Contains s '
Stores d |Z|

22

Projetando uma API REST

URI Path Design

e Nomes no devem ser usados para homear
e Nomes no devem ser usados para nhomear

e Nomes no devem ser usados para homear

« Um deve ser utilizado para nomear um

PUT /users/1234,favorites/alonso
POST http://api.college.org/students/register

23

Projetando uma API REST

URI Path Design

 Os nomes de funcoes

DELETE /users/1234

GET /deleteUser?id=l1
GET /deleteUser/1234
DELETE /deleteUser/1
POST /users/1234/del

nao devem ser usados em

24

Projetando uma API REST

URI Query Design

* A query string pode ser utilizada para filtrar collections or stores

* A query string deve ser utilizada para paginar os resultados de collections ou
stores

GET /users?role=admin
GET /users?pageSize=25&pageStartIndex=50

25

Projetando uma API REST

Interagindo com o HTTP

Finalidade

HTTP Method

Recuperar a representacao de um recurso

GET

Criar recurso / Executar um controller

POST

Atualizar um recurso

Excluir um recurso

DELETE

Recuperar os metadados associados a um recurso

HEAD

Recuperar os metadados associados a um recurso que descrevem
as possiveis interacoes

OPTIONS

26

Projetando uma API REST

HEAD

/movies/1234

HTTP/1.1

Host: meusite.com.br

User-Agent: Mozilla/5.0

Accept: text/html

Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;9=0.7,*;=0.7
Keep-Alive: 300

I | NN | SR | E—

Request Line

Cabecalhos

Linha em branco

Corpo da mensagem

[| D | I | B

HTTP/1.1 200 OK

Date: Sun, 18 Oct 2009 08:56:53 GMT

Server: Apache/2.2.14 (Win32)

Last-Modified: Sat, 20 Nov 2004 07:16:26 GMT
Accept-Ranges: bytes

Content-Length: 44

Connection: close

Content-Type: text/html

27

Projetando uma API REST

Options

OPTIONS /movies/1234 HTTP/1.1

HTTP/1.1 200 OK

Host: meusite.com.br

User-Agent: Mozilla/5.0

Accept: text/html

Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;9=0.7,*;=0.7
Keep-Alive: 300

Date: Sun, 18 Oct 2009 08:56:53 GMT

Server: Apache/2.2.14 (Win32)

Last-Modified: Sat, 20 Nov 2004 07:16:26 GMT
Accept-Ranges: bytes

Content-Length: 44

Connection: close

Allow: GET, PUT, DELETE

28

Codigos de status HTTP

Grupo

Cddigo

Se comunicando com uma API REST

Quando

Txx - Respostas informativas

Raramente sao utilizadas

Raramente sao utilizadas

2xX - Envias em
caso de sucesso

200 OK

Cédigo mais utilizado. Requisicao processada
Com sSUCesso

201 Created

Indica que um novo registro foi criado. Usando
em respostas a requisicoes POST

202 Accepted

Indica que uma ag¢ao assincrona iniciou com
SUCesso

204 No content

Usado quando o corpo € intencionalmente vazio.
Usado com requisi¢cdes PUT, POST e DELETE.

29

Se comunicando com uma APl REST
Codigos de status HTTP

Grupo Cddigo Quando

3xx - Define respostas 301 Moved Permanently Informa que o recurso A agora é o recurso B
de redirecionamento

304 Not moditied Resposta utilizada em cenarios de cache. Informa ao
cliente que a resposta nao foi moditicada. Portanto, o
cliente pode usar a mesma versao em cache da
resposta

307 Temporary redirect |Indica que a APl ndo ira processar a requisicao. Uma
nova requisicao deve ser feita para URI indicada no
Header

30

Grupo

Cddigo

Se comunicando com uma APl REST
Codigos de status HTTP

Quando

4xx - Informa erros 400 Bad Request

no lado do cliente

Indica que o servidor nao conseguiu entender a

requisicao, devido a sua sintaxe ou estrutura invalida

401 Unauthorized

Informa que existe uma camada de seguranca para
recurso solicitado, e que as credenciais informadas
requisi¢ao estao incorretas

403 Forbidden

Informa que as credenciais foram reconhecidas ao mesmo
tempo que indica que o cliente ndo tem permissao para
acessar O recurso

31

Codigos de status HTTP

Grupo

Cddigo

Se comunicando com uma API REST

Quando

dxx - Informa erros 404 Not Found

no lado do cliente

Informa que o servidor ndo encontrou o recurso
solicitado

405 Method Not Allowed

Informa que o recurso especifico ndo suporta o método
HTTP utilizado

406 Not Acceptable

Indica que o cliente requisitou dados em um formato de
media ndo aceito

429 Too Many Requests

Nao é tdo comum, mas pode ser utilizar para informar
que o cliente excedeu o limite permitido de requisi¢cdes

32

Codigos de status HTTP

Grupo Cddigo

Se comunicando com uma API REST

Quando

5xx - Enviadas quando 500 Internal Server Error
ocorre um erro no lado
do servidor

Erro mais genérico do grupo. Informa que o
servidor encontrou um cenario inesperado de erro
com o qual nao soube lidar

503 Service Unavailable

Normalmente é utilizado para informar que o
servidor esta fora do ar, em manutencao ou
sobrecarregado

33

Se comunicando com uma API REST

Headers

* Proveem informacoes sobre o recurso requisitados

* |Indicam algo sobre a mensagem que esta sendo enviada

 Regras
. deve ser utilizado
. deve ser utilizado
. deve ser utilizado em respostas

. devem ser usados promover o0 uso de cache

34

Se comunicando com uma API REST

Headers

Request Header Response Header Effect Exemplos

Accept Content-Type Tipo de media application/json
text/html

multipart/form-data

Accept-Language

Content-Language l[dioma en-US, fr;g=0.9
en-GB

Accept-Encoding

Content-Encoding Compressao gzip, br

compress
deflate
identity

Accept-Charset

Content-Type charset parameter Codificacdao dos caracteres text/html; charset=utf-8

35

Projetando uma API REST

Accept & Content-Type

GET /movies/1234 HTTP/1.1

HTTP/1.1 200 OK

Host: meusite.com.br

User-Agent: Mozilla/5.0

Accept: application/json

Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;9=0.7,*;9=0.7
Keep-Alive: 300

Date: Sun, 18 Oct 2009 08:56:53 GMT

Server: Apache/2.2.14 (Win32)

Last-Modified: Sat, 20 Nov 2004 07:16:26 GMT
Accept-Ranges: bytes

Content-Length: 44

Connection: close

Content-Type: application/json

{
"id": 1234,
“title": "Inception”,
"quotes": [
"Dreams feel real while we're in them.

36

Middlewares

Middlewares

e Euma que trata uma HTTP em uma
aplicacao Express

 Pode manipular a requisicao ou a resposta

* Pode realizar uma acao isolada

* Pode finaliza o fluxo da requisicao ao retornar uma resposta
* Pode passar o controle da requisicao ao proximo middleware

 Para carregar um middleware chamamos:

38

Middlewares

 Uma aplicativo Express é essencialmente uma serie de chamadas a
middlewares

* Tais funcoes que tem acesso a:

o AO objeto de requisigéo (req), app.use (function (req, res, next) {

console.log('Request from: ' + reqg.ip);
next () ;

* Ao objeto de resposta (res) b) ;

e A préxima funcdo de middleware no ciclo de solicitacdo-resposta da
aplicacao

 Comumente indicada por uma variavel chamada next

39

Middlewares
Tipos de Middleware

 Em uma aplicacao Express podemos ter diversos tipos de middlewares
* Application-level middleware
* Router-level middleware
* Error-handling middleware
* Built-in middleware

* Third-party middleware

Middlewares

Application-level middleware

const express = require('express')
const app = express ()
app.use((req, res, next) => {

console.log('Time:', Date.now())
next ()

})

41

Middlewares

Router-level middleware

 Funcionam da mesma maneira que application level middleware

* Estao ligado a um Router do Express

const express = requilre ('express')
const app = express ()
const router = express.Router ()

router.use((req, res, next) => {
console.log('Time:', Date.now())

next ()

})

42

Middlewares

Error-handling middleware

 Sempre recebem quatro argumentos
 Mesmo quando algum deles nao € necessario

e Sem 0s argumentos, ele nao sera capaz de lidar com os erros

app.use((err, req, res, next) => {
console.error (err.stack)
res.status (500) .send ('Something broke!'")

})

43

Middlewares

Built-in middleware

« Sao middleware que sao disponiveis no codigo do Express
 Exemplos:

e express.static

e express.json (a partir do Express 4.16.0+)

e express.urlencoded (a partir do Express 4.16.0+)

app.use((err, req, res, next) => {
console.error (err.stack)
res.status (500) .send ('Something broke!')

})

44

Middlewares

Built-in middleware

const options = {
dotfiles: 'ignore',
etag: false,
extensions: ['htm', 'html'],

1ndex: false,
maxAge: '1d'",
redirect: false,

setHeaders: function (res, path, stat) {
res.set('x—-timestamp', Date.now())

J

app.use (express.static('public’',

options))

45

Middlewares
Third-party

e SAao criados por terceiros para adicionar novas funcionalidades ao Express

* E necessario instalar o modulo Node.js para ter acesso a funcionalidade

S npm install cookie-parser

const express = requilre ('express')
const app = express|()
const cookieParser = require('cookie-parser')

app.use (cookieParser ())

46

Middlewares

Disponiveis no Express

Middleware Descricao
router Sistema de rotas da aplicagao
morgan Realiza o log das requisicoes HTTP

compression

Comprime as respostas HTTP

json Realizar o parse de application/json

urlencode Realiza o parse de application/x-www-form-urlencodea

multer Realiza o parse de multipart/form-data

bodyParser Realiza o parse do body usando os middlewares json, url encoded e multipart
timeout Detina um periodo de tempo limite para o processamento da solicitacdo HTTP

47

Middlewares

Disponiveis no Express

Middleware

Descricao

cookieParser

Realizar o parse de cookies

session

Da suporte a sessdes

cookieSession

Da suporte a cookie de sessao

responselime

Grava o tempo de resposta do servidor

serve-static

Configura o diretério de recursos estaticos do servidor

serve-favicon

Serve o favicon do website

errorHandler

Gera o stacktrace de erros utilizando HTML

48

Middlewares

Fluxo da requisicao

» EXxiste apenas um ponto de entrada em aplicacoes Node + Express

1. Cliente realiza 2. O servidor HTTP 3. C :
L~ . L~ favicon
uma requisicao envia a requisicao
para o Express /:ie ' '
morgan
' ——
Cliente Servidor _
(Navegador, HTTP em compression
aplicacao Express ——
movel, etc..) NODE :
’ - json
5. O servidor HTTP cookieParser
envia a resposta
para o cliente 4. A funcdes respondem apicache
a requisicao
router

Referencias

O que é uma API (interface de programacao de aplicacoes)?
« REST API Design Rulebook, Mark Masse

O que € a API REST e como ela difere de outros tipos?

 What is REST

 What is a REST API?

« What is the difference between POST and PUT in HTTP?

50

https://aws.amazon.com/pt/what-is/api/
https://appmaster.io/pt/blog/o-que-e-a-api-rest-e-como-ela-difere-de-outros-tipos
https://restfulapi.net/
https://www.ibm.com/topics/rest-apis
https://sentry.io/answers/what-is-the-difference-between-post-and-put-in-http/

Referencias

 Why HATEOAS is useless and what that means for REST

» Restful AP| guidelines

* Exploring REST API Architecture

« REST API vs RESTful API: Which One Leads in Web App Development?

e A anatomia de uma APl RESTful

 API REST: o que € e como montar uma APl sem complicacao?

* Using Middleware

51

https://medium.com/@andreasreiser94/why-hateoas-is-useless-and-what-that-means-for-rest-a65194471bc8
https://sandywits.medium.com/restful-api-guidelines-d1ac255b7953
https://danmartensen.svbtle.com/exploring-rest-api-architecture
https://radixweb.com/blog/rest-vs-restful-api
https://thiagolima.blog.br/a-anatomia-de-uma-api-restful-80df2aca158e
https://blog.betrybe.com/desenvolvimento-web/api-rest-tudo-sobre/
https://expressjs.com/en/guide/using-middleware.html

Por hoje e soO

