
Prof. Bruno Góis Mateus (brunomateus@ufc.br)

Criando uma app SPA c/ Vue.js
e Pinia
QXD0193 - Projeto de Interfaces Web

mailto:brunomateus@ufc.br

Agenda

• Introdução

• Pinia

2

Introdução

Goku
Lorem ipsum

12:43

Introdução ao Pinia
Motivação

• Imagine que você desenvolveu uma aplicação de chat

• Lista de usuário, chat privados, histórico de conversas

• Barra de notificação que informa sobre mensagens não
lidas enviadas por outros usuários

• Milhões de usuários usam sua aplicação todos os dias

• Reclamação: vez por outra a barra de navegação mostra
notificações falsas

4

Jonathan Perry
Lorem ipsum

12:43

Edward Elric
Lorem ipsum

12:43

+

2

Aang
Lorem ipsum

12:43

Luffy
Lorem ipsum

12:43

Inuyasha
Lorem ipsum

12:43

Mensagens

2

8

3

Introdução ao Pinia
Motivação

• A situação anterior “zombie notification” foi enfrentada pelo
desenvolvedores do Facebook a alguns anos atrás

• A solução do problema serviu de inspiração para a criação
de um padrão arquitetural

5

Goku
Lorem ipsum

12:43

Jonathan Perry
Lorem ipsum

12:43

Edward Elric
Lorem ipsum

12:43

+

2

Aang
Lorem ipsum

12:43

Luffy
Lorem ipsum

12:43

Inuyasha
Lorem ipsum

12:43

Mensagens

2

8

3

“Quando múltiplos componentes de uma aplicação
compartilham os mesmos dados, a complexidade das
interconexões irão aumentar até que não seja mais possível
prever ou entender o estado dos dados. Consequentemente,
a aplicação se torna impossível de estender ou manter.”

Introdução ao Pinia
Flux

• É um padrão arquitetural e não um biblioteca

• Conjunto de princípios que descrevem um arquitetura escalável para frontend

• Aplicável em qualquer aplicação complexa

• Implementações

6

Introdução ao Pinia
Princípios do FLUX - Single Source of Truth

• Qualquer dado compartilhado entre componentes, devem ser mantidos em
um único local, separado dos componentes que o utilizam

• Este local único é chamado de store

• Componentes devem ler dados da store

• Componentes podem ter dados locais que apenas eles devem conhecer

• Ex: A posição de uma barra de navegação em um componente de lista

7

Introdução ao Pinia
Princípios do FLUX - Data is read-only

• Componentes podem ler os dados da store livremente, no entanto, eles não
podem alterar os dados contidos na store

• Componentes informam a intenção de alterar algum dado

• A store realizar essas mudanças (mutations)

8

Introdução ao Pinia
Princípios do FLUX - Mutations are synchronous

• Mutations são síncronas garantem que o estado dos dados não dependem
de um sequência e do tempo de execução de eventos imprevisíveis

9

Pinia

Introdução ao Pinia
Pinia

• Biblioteca que facilita a implementação da arquitetura Flux

• State Management Pattern + library

• Armazena os dados de forma centralizada garantindo que os estados só
podem ser mudados de uma forma previsível

• Iniciou como um experimento de redesign do Vuex 5 usando a composition
API

• Prover uma API mais simples comparada com o Vuex

• Baseada em três conceitos principais: state, getters e actions
11

Introdução ao Pinia
Vantages de usar o Pinia

• Devtools support

• Rastrei ações e mutações

• Viagem no tempo e debug facilitado

• Hot module replacement

• É possível modificar as stores sem recarregar a página

• Plugins

• Suporte a TypeScript e autocompletion em JS

• Server Side Rendering suport
12

Introdução ao Pinia

13

Backend API

DevtoolsComponentes Vue

Actions

Mutations

State

CommitDispatch

MutateRender

Introdução ao Pinia
Core concepts - Store

• É uma entidade que armazena o estado e as lógica de negócios que não
estão ligadas com a árvore de componentes

• Armazena o estado global da aplicação

• Podemos tratá-la como um componente que está sempre presente

14

Introdução ao Pinia
Quando usar Stores?

• Stores devem conter informações que devem ser acessadas em toda parte
da aplicação

• Dados usados em vários locais (Ex: Informações do usuário “logado”)

• Dados que precisam ser preservados independente da navegação

• Deve se evitar o armazenamento de dados que poderiam estar em um
componente

• A visibilidade de um elemento do componente

15

Introdução ao Pinia
Core concepts - State

• É parte central das stores

• Pinia permite o uso de várias stores independentes (single state tree)

• Single source of truth

• Evita o compartilhamento dos dados com todos os componentes

16

Introdução ao Pinia
Criando uma Store

17

import { createPinia } from 'pinia'

app.use(createPinia())

<script setup>
import { counterStore } from '@/stores/counter'
const myCounter = useCounterStore()
 myCounter.count++
</script>

import { defineStore } from 'pinia'
export const useCounterStore = defineStore('counter', () => {
 const count = ref(0)
 return { count }
})

Introdução ao Pinia
Core concepts - Getters

• Algumas vezes precisamos de um estado derivado do estado da store

• São o equivalente ao computed values só que aplicados a states

• Precisam ser síncronos

18

Introdução ao Pinia
Core concepts - Getters

19

<script setup>
 const store = taskStore()
</script>

 <template>

<p>
 #Done {{ store.doneTasksCount }}
</p>

 </template>

import { ref, computed } from 'vue'
export const taskStore = defineStore('main', () =>
{
 const todos = ref([
 { id: 1, text: '...', done: true },
 { id: 2, text: '...', done: false }
])

 const doneTasks = computed(() =>
todos.value.filter(todo => todo.done))

 const doneTasksCount = computed(() =>
doneTodos.value.length)

 return { doneTasks, doneTasksCount }
})

Introdução ao Pinia
Core concepts - Actions

• Ações são o equivalente aos métodos porém aplicados em stores

• Diferentemente de getters, podem ser assíncronas

• Perfeitas para definir lógicas de negócios

20

<script setup>
 const store = useStore()
 store = store.randomizeCounter()
</script>

Introdução ao Pinia
Core concepts - Action

21

export const useCounterStore =
defineStore('main', () => {

 const counter = ref(0)

 function increment() {
 return counter.value++
 }

 function randomizeCounter() {
 counter.value = Math.round(100 *
Math.random())
 }

 return { randomizeCounter }
})

Introdução ao Pinia
Estrutura de uma aplicação

22

├── index.html
├── main.js
├── api
│ └── ... # abstractions for making API requests
├── components
│ ├── App.vue
│ └── ...
└── stores
 ├── user.js
 ├── main.js

Introdução ao Pinia
Ecossistema

23

Ecossistema
Vue

Vue CLI

Vue
Loader

Vue
Dev

Tools

Referências

• Why Vue CLI?

• Jargon-Free Webpack Intro For VueJS Users

• Introducing Vite: A Better Vue CLI?

• Has Vite Made Vue CLI Obsolete?

• Vue 3.2 - Using Composition API with Script Setup

• WTF is Vuex? A Beginner's Guide To Vuex 4

• Complex Vue 3 state management made easy with Pinia

• https://next.router.vuejs.org
24

https://vuejsdevelopers.com/topics/vue-cli/
https://vuejsdevelopers.com/2017/12/04/webpack-intro-vue-js/
https://www.codemag.com/Article/2109071/Introducing-Vite-A-Better-Vue-CLI
https://vuejsdevelopers.com/2020/12/07/vite-vue-cli/
https://www.thisdot.co/blog/vue-3-2-using-composition-api-with-script-setup
https://vuejsdevelopers.com/2017/05/15/vue-js-what-is-vuex/
https://blog.logrocket.com/complex-vue-3-state-management-pinia/
https://next.router.vuejs.org

Por hoje é só

25

