& UNIVERSIDADE
i:W®s) FEDERAL DO CEARA

S VNITA FO5 .
g€ CAMPUS QUIXADA

Boas praticas em APl REST

QXDO0279 - Desenvolvimento de Software para Web 2

Prof. Bruno Gois Mateus (brunomateus@ufc.br)

mailto:brunomateus@ufc.br

Agenda

* |Introducao

» Estruturando o projeto da API
 Padronizando respostas

» Validacao de dados

e Documentando uma API

Introducao

Introducao

@ Por que estudar boas praticas em APIs?

 Criar uma API funcional é facil.

 Criar uma API solida, escalavel e facil de manter € outra historia

Introducao

% O Express é extremamente flexivel

* Ao contrario de frameworks mais “opinionados” como NestdS, AdonisdS ou
Laravel, o Express nao impoe estrutura.

* |Sso significa:
Liberdade total
Baixa curva de aprendizado

X Maior risco de bagunca

X Coddigo inconsistente entre times

Introducao

Diversas formas de estruturar um projeto Express

e Estilo MVC e Estilo por dominios/mddulos < Arquiteturas avancadas
» controllers/ * modules/users/ * Clean Architecture
* services/ * modules/products/ Hexagonal Architecture
* repositories/ DDD (Domain-Driven

Design)

Introducao

Express nao define

X como criar camadas X como estruturar controllers

X como tratar erros X como criar respostas padronizadas
X como validar inputs X como lidar com status codes

X como paginar X como lidar com repositdrios/banco
X como versionar X como lidar com async/await e erros

X como documentar endpoints

Introducao

o O que é uma APl REST bem construida?

W Intuitiva: Rotas previsiveis e consistentes

& Segura: Validacdo, sanitizacao e tratamento de erros

) Estavel: Contratos claros que ndo quebram a cada mudanca
Documentada: Swagger / OpenAPI

Observavel: Cdédigos HTTP corretos e estruturados

Padronizada: Respostas com o mesmo formato em toda a API

Estruturando o projeto da API

Por que a estrutura é tao importante?

Estruturando o projeto da API

e Uma APl mal estruturada: e Uma APl bem estruturada:

X se torna dificil de manter
X acumula cddigo duplicado
X torna testes mais dificeis

X dificulta escalar o sistema

X forca novos devs a reaprender padrdes

facilita manutencao

separa responsabilidades
melhora testabilidade

permite evolugdo sem bagunca

organiza a ldgica de negdcio

10

Estruturando o projeto da API

Estrutura minima

e Usado apenas para APIs pequenas ou prototipos.

src/
—— app.ts
—— 1ndex.ts

11

Estruturando o projeto da API

Estrutura por rotas

* Boa para APIs pequenas, mas nao separa ldgica de negocio

src/

—— routes/

—— middlewares/
— app.ts

12

Estruturando o projeto da API

Estrutura por funcionalidade / dominio

e Cada modulo contém tudo (rota, controller, servico...)

 Muito usada em projetos grandes

src/

—— users/
—— products/
—— orders/

13

Estruturando o projeto da API

A estrutura que usaremos: MVC (Estendido)

« Em uma API REST nao possuimos a camada de View, entao usamos o MVC adaptado:
e Controller
* Recebe a requisicao — chama o servico — retorna a resposta
e Service
» |Logica de negocio da aplicacao
* Repository
 Comunicacao com o banco (ORM)
 Model/Entity

* Representacao da tabela (TypeORM)

14

Estruturando o projeto da API

A estrutura que usaremos: MVC (Estendido)

src/

—— config/ — config geral (db, env, swagger...)
—— modules/

users/

—— user.controller.ts
—— user.service.ts

—— user.repository.ts
—— user.entity.ts

—— user.routes.ts

—— user.schema.ts (zZod)
products/

—— middlewares/

—— shared/

errors/

responses/

—— app.ts

—— SsServer.ts

Estruturando o projeto da API

A estrutura que usaremos: MVC (Estendido)

e Controller
 Nao contém logica de negocio
e Léinputs
 Chama o service

 Retorna resposta padronizada

16

Estruturando o projeto da API

A estrutura que usaremos: MVC (Estendido)

e Service
« Contém a ldgica de negdcio
* Orquestra validacoes
e Pode falar com varios repositorios

* Onde regras sao implementadas

Estruturando o projeto da API

A estrutura que usaremos: MVC (Estendido)

* Repository
 Comunicacao com o banco via TypeORM

e find, save, delete, queries personalizadas

18

Estruturando o projeto da API

A estrutura que usaremos: MVC (Estendido)

//Fluxo da requisicdo
Request — Middleware - Controller — Service — Reposilitory — Banco

//Fluxo da resposta
Repository —» Service — Controller — Resposta padronizada - Cliente

19

Padronizando respostas

Padronizando respostas

O problema: respostas inconsistentes

« APIs tornam-se dificeis de consumir

e Clientes precisam tratar casos especiais o tempo todo
 Aumenta o acoplamento entre frontend e backend

e O frontend precisa “adivinhar” o formato da resposta a cada endpoint
 Dificulta a documentacao e gera duvidas

 Complica o tratamento global de erros

21

Padronizando respostas

Exemplos de API inconsistente

// endpoint A
{ "user": { "name": "Ana" } }

// endpoint B
{ "data": { "product": "Notebook" } }

// endpoint C
{ "message": "ok", "name": "Pedro" }

// endpoint D (erro)
{ "status": 400, "msg": "invalid input"

}

22

Padronizando respostas

O objetivo do formato consistente

Tornar previsivel

Tornar facil de consumir
Padronizar sucesso e erro
Simplificar testes

Simplificar documentacdo (Swagger)

23

Padronizando respostas

Exemplos de padroes usados em APlIs

// Padrdo minimalista

{
"data": { ... }

J

// Padrdo minimalista com metadados

{

"success'": true,
"data": { ... }

}
//Padrdo "do Google"

{
"data": { ..
"error": null

b

24

Padronizando respostas

Exemplos de padroes usados em APlIs

//Padrdo enriquecido

{

"success'": true,

"data": { ... },

"errors": [],

"meta":
"timestamp": "...",

"path": "/api/vl/users"

J
J

25

Padronizando respostas

//Resposta de sucesso

{

"success": true,
"data": {},
"meta": {}

J

//Resposta de erro
{
"success": false,
"error": |
"message": "Validation failed",
"detai1ls": [],
"code": "BAD REQUEST"
b

"meta": {}

Validagao de dados

Validacao de dados

Por que validacao e importante?

 Evita falhas I6gicas no backend
* EX.: operacoes com campos faltando ou formatos invalidos
* Protege sua aplicacao
* Entrada invalida é vetor comum de ataques (ex.: injections, payloads malformados)
» Evita erros dificeis de rastrear
» Validacao clara — erros previsiveis = menor custo de manutencao
* Melhora a experiencia do usuario

 Mensagens de erro claras ajudam frontend a corrigir inputs antes mesmo de enviar

28

Validacao de dados

O que acontece quando NAO validamos os dados?

 Exemplos de problemas reais:

Operacoes com valores undefined causam erros inesperados
Scripts maliciosos podem chegar ao banco de dados

O backend fica cheio de ifs e checagens manuais

Controllers se tornam enormes e pouco legiveis

A API retorna erros inconsistentes e dificeis de testar

29

Validacao de dados

Validar manualmente e dificil e repetitivo

* Muito codigo repetido

 Nao ha reaproveitamento

e Fica dificil atualizar o schema

* Facil de esquecer validacoes

e Erros iInconsistentes

if
if

if
if

if

(!reg.body.email) { ... }
(!'reg.body.email.includes ("Q@")) { ... }
(typeof reqg.body.age !== "number") { ... }
(reg.body.age < 18) { ... }
(!Array.1sArray(reqg.body.tags)) { ... } 20

Validacao de dados

Bibliotecas mais usadas no mercado

©® Zod

* Tipos inferidos automaticamente para
TypeScript

e Sintaxe clara
» Otimo para APIs modernas
@ Yup
 Popular no frontend, especialmente com React

 Muita compatibilidade com forms

© class-validator

 Muito usado junto com
TypeORM

e Baseado em decorators

« Bom para aplicacoes OOP

31

Validacao de dados

Exemplo basico com Zod

import { z } from "zod";

const userSchema = z.object ({
name: z.string() .min(3),
email: z.string () .email (),

age: zZ.number () .int() .min(18)

b) s

32

Validacao de dados

Exemplo basico com Zod

import { z } from "zod";

const userSchema = z.object ({
name: z.string() .min(3),
email: z.string () .email (),
age: zZ.number () .int() .min(18)

b))

//Validacdo

userSchema.parse (reqg.body) ;

33

Validacao de dados

Exemplo de mensagens de erro do Zod

//Entrada

{
"name": "A",
"email": "invalido",
"age": 15

}
//Resultado da validacdo

[

{ path: ["name"], message: "String must contain at least 3
character(s)" },

{ path: ["ema1l"], message: "Invalid email" },

{ path: ["age"], message: "Number must be greater than or equal to

18" }

Validacao de dados

Criando um middleware de validacao

import { z } from "zod";

export const validate = (schema: z.Schema) =>
try {
schema.parse (reqg.body) ;
next () ;

} catch (err) {

return res.status (400) .73son ({
success: false,
error: {

message: "Validation failed",
details: err.errors,
code: 400

b

meta: {

path: reqg.path,
tilmestamp: new Date () .toISOString ()

(req,

res,

next)

=>

{

35

Validacao de dados

Usando o middleware em uma rota

import { Router } from "express";
import { z } from "zod";

import { validate } from "../middlewares/validate";
const router = Router ()
const createUserSchema = z.object ({

name: z.string () .min(3),

email: z.string() .email (),

password: z.string () .min (6)

b) s

router.post (
"/users",
validate (createUserSchema),
userController.create

N

36

Validacao de dados

Validando Params e Query

const paramsSchema = z.object ({
1d: z.string() .uuid(),

b) s

const guerySchema = z.object ({
page: z.string () .optional (),
limit: z.string () .optional ()

}) s

router.get (
"/users/:id",
validate (paramsSchema),
validate (querySchema),
userController.getUser

N

37

Validacao de dados

Tipando

e Agora CreateUserDTO é totalmente seguro, porque:
» E IMPOSSIVEL divergir do schema

 Se mudar a validacao, o tipo muda junto

export type CreateUserDTO = z.1infer<typeof createUserSchema>;

38

Validacao de dados

Atualizando o middleware

import { z } from "zod";

export const validate = (schema: z.Schema) => (req,
try 1
reg.validated = schema.parse (reqg.body);
next (),

} catch (err) {
return res.status (400) .73son ({
success: false,
error: {

message: "Validation failed",
details: err.errors,
code: 400

b

meta: {

path: reqg.path,
timestamp: new Date () .tolISOString/()

res,

next)

=>

{

39

Validacao de dados

Tipando

// types/index.d.ts
import * as express from 'express';

declare global {
namespace Express {
interface Request {
validated?: any;

J
J

J

40

Documentando uma API

Documentando uma API

Por que documentar uma API?

v Facilita a comunicacao entre equipes

* Frontend, backend, QA e DevOps precisam de um contrato claro

v/ Evita suposicoes e erros de integracao
e Se a documentacao é fraca, cada time interpreta a APl de um jeito
v/ Ajuda novos desenvolvedores a entender o sistema

* Onboarding mais rapido, menos duvidas, menos gargalos

42

Documentando uma API

Por que documentar uma API?

v/ Permite testes automatizados e ferramentas de inspecao

 EX.: Postman, Insomnia, Swagger UI.
v/ Garante consisténcia durante a evolucao da API

* Evita endpoints “escondidos” e comportamentos inesperados.

43

Documentando uma API

Problema com documentacao manual

 Documentacao manual significa:
* Arquivos .md que ficam desatualizados
* Escrever payloads e erros manualmente
* Nao garantir consisténcia entre documentacao e codigo
* Duplicacao de trabalho
 Dificil acompanhar mudancas

= Precisamos de documentacao sincronizada com o codigo.

44

Documentando uma API

OpenAPI + Swagger: por que usar?

v/ Padrao da industria

 OpenAPI é o formato universal para documentar APIls REST.
v Compativel com varias ferramentas

 Swagger Ul, Postman, Insomnia

* GitHub API renderer

* Geradores de SDK
v/ Permite documentacao viva

e Atualiza automaticamente conforme a APl cresce.

45

Documentando uma API

Usando a zod-to-openapi

npm install swagger-ui-express (@asteasolutions/zod-to-openapi

npm i1 —--save-dev (@types/swagger-ul-express

46

Documentando uma API

Usando a zod-to-openapi - Schema

import { z } from 'zod'
import { extendZodWithOpenApi } from '(@asteasolutions/zod-to-openapi';

extendZodWithOpenApi (z)

export const createProduct = z.object ({
name: z.string ('O campo nome & obrigatdrio') .openapi ({ example: "Sanduicheilra
Elétrica"}l),
description: z.string() .openapil ({ example: 'Design unico e formato
inovador' }),
price: z.number () .positive () .openapil ({ description: 'Numero malor que
zero' 1}),
quantity: z.number () .positive () .openapil ({ description: 'Numero malor Jgue

zero' }),
image: z.string() .url () .openapi({ description: 'Uma URL valida' })

b) s

47

Documentando uma API

Usando a zod-to-openapi - Rotas

registry.registerPath ({
method: "get",

path: "/products",

description: "Retorna todos os produtos",
responses: {
200: {
description: "Lista de produtos",
content: {
"application/json":

schema: productsResponseSchema

}
}
by
by
tags: ["Products"]
})

48

Documentando uma API

Usando a zod-to-openapi - Gerador

import { OpenAPIRegistry, OpenApiGeneratorV3 } from "(@dasteasolutions/zod-to-

openapli";

export const registry

= new OpenAPIRegistry ()

export function buildOpenAPIDocument () {
const generator = new OpenApliGeneratorV3(reglstry.definitions);
const doc = generator.generateDocument ({
openapi: '3.0.0",
info: {
version: '1.0.0",
title: 'Products API',
description: 'API for managing products',
i
servers: [{ url: 'http://localhost:3000"'" }],

})

return doc;

49

Documentando uma API

Usando a zod-to-openapi - Configurando o server

import { buildOpenAPIDocument } from "./docs/openapi.]js";

const app = createlppl()

// build doc (gera a partir do registry preenchido pelas rotas)
const openapiDoc = bui1ldOpenAPIDocument () ;

// serve swagger em /docs
app.use ("/docs", swaggerUi.serve, swaggerUi.setup (openapiDoc)) ;

50

Referencias

* Project structure for an Express REST AP| when there is no "standard way"

 How to structure an Express.|s REST API with best practices

 How to create a REST API with Node.js and Express

 REST API Design Rulebook, Mark Masse

* Designing API responses

e REST API| Best Practices

e /0d

51

https://www.coreycleary.me/project-structure-for-an-express-rest-api-when-there-is-no-standard-way/
https://treblle.com/blog/egergr
https://blog.postman.com/how-to-create-a-rest-api-with-node-js-and-express/
https://www.speakeasy.com/api-design/responses
https://medium.com/@sukhadamorgaonkar28/rest-api-best-practices-239f4d0bd6f5
https://zod.dev/

Referencias

 Schema validation in TypeScript with Zod

A Complete Guide to Zod

 What Is OpenAPI?

52

https://blog.logrocket.com/schema-validation-typescript-zod/
https://betterstack.com/community/guides/scaling-nodejs/zod-explained/
https://swagger.io/docs/specification/v3_0/about/

Por hoje e soO

