
Prof. Bruno Góis Mateus (brunomateus@ufc.br)

Boas práticas em API REST
QXD0279 - Desenvolvimento de Software para Web 2

mailto:brunomateus@ufc.br

Agenda

• Introdução

• Estruturando o projeto da API

• Padronizando respostas

• Validação de dados

• Documentando uma API

2

Introdução

Introdução
🧠 Por que estudar boas práticas em APIs?

• Criar uma API funcional é fácil.

• Criar uma API sólida, escalável e fácil de manter é outra história

4

Introdução
🚀 O Express é extremamente flexível

• Ao contrário de frameworks mais “opinionados” como NestJS, AdonisJS ou
Laravel, o Express não impõe estrutura.

• Isso significa:

✅ Liberdade total

✅ Baixa curva de aprendizado

❌ Maior risco de bagunça

❌ Código inconsistente entre times

5

Introdução
Diversas formas de estruturar um projeto Express

• Estilo MVC

• controllers/

• services/

• repositories/

6

• Estilo por domínios/módulos

• modules/users/

• modules/products/

• Arquiteturas avançadas

• Clean Architecture

• Hexagonal Architecture

• DDD (Domain-Driven
Design)

Introdução
Express não define

❌ como criar camadas

❌ como tratar erros

❌ como validar inputs

❌ como paginar

❌ como versionar

❌ como documentar endpoints

7

❌ como estruturar controllers

❌ como criar respostas padronizadas

❌ como lidar com status codes

❌ como lidar com repositórios/banco

❌ como lidar com async/await e erros

Introdução
🌎 O que é uma API REST bem construída?

1⃣ Intuitiva: Rotas previsíveis e consistentes

2⃣ Segura: Validação, sanitização e tratamento de erros

3⃣ Estável: Contratos claros que não quebram a cada mudança

4⃣ Documentada: Swagger / OpenAPI

5⃣ Observável: Códigos HTTP corretos e estruturados

6⃣ Padronizada: Respostas com o mesmo formato em toda a API

8

Estruturando o projeto da API

Estruturando o projeto da API
Por que a estrutura é tão importante?

• Uma API mal estruturada:

❌ se torna difícil de manter

❌ acumula código duplicado

❌ torna testes mais difíceis

❌ dificulta escalar o sistema

❌ força novos devs a reaprender padrões

10

• Uma API bem estruturada:

✅ facilita manutenção

✅ separa responsabilidades

✅ melhora testabilidade

✅ permite evolução sem bagunça

✅ organiza a lógica de negócio

Estruturando o projeto da API
Estrutura mínima

• Usado apenas para APIs pequenas ou protótipos.

11

src/
 ├── app.ts
 └── index.ts

Estruturando o projeto da API
Estrutura por rotas

• Boa para APIs pequenas, mas não separa lógica de negócio

12

src/
 ├── routes/
 ├── middlewares/
 └── app.ts

Estruturando o projeto da API
Estrutura por funcionalidade / domínio

• Cada módulo contém tudo (rota, controller, serviço…)

• Muito usada em projetos grandes

13

src/
 ├── users/
 ├── products/
 ├── orders/

Estruturando o projeto da API
A estrutura que usaremos: MVC (Estendido)

• Em uma API REST não possuímos a camada de View, então usamos o MVC adaptado:

• Controller

• Recebe a requisição → chama o serviço → retorna a resposta

• Service

• Lógica de negócio da aplicação

• Repository

• Comunicação com o banco (ORM)

• Model/Entity

• Representação da tabela (TypeORM)

14

Estruturando o projeto da API
A estrutura que usaremos: MVC (Estendido)

15

src/
 ├── config/ ← config geral (db, env, swagger…)
 ├── modules/
 │ ├── users/
 │ │ ├── user.controller.ts
 │ │ ├── user.service.ts
 │ │ ├── user.repository.ts
 │ │ ├── user.entity.ts
 │ │ ├── user.routes.ts
 │ │ └── user.schema.ts (Zod)
 │ └── products/
 ├── middlewares/
 ├── shared/
 │ ├── errors/
 │ └── responses/
 ├── app.ts
 └── server.ts

Estruturando o projeto da API
A estrutura que usaremos: MVC (Estendido)

• Controller

• Não contém lógica de negócio

• Lê inputs

• Chama o service

• Retorna resposta padronizada

16

Estruturando o projeto da API
A estrutura que usaremos: MVC (Estendido)

• Service

• Contém a lógica de negócio

• Orquestra validações

• Pode falar com vários repositórios

• Onde regras são implementadas

17

Estruturando o projeto da API
A estrutura que usaremos: MVC (Estendido)

• Repository

• Comunicação com o banco via TypeORM

• find, save, delete, queries personalizadas

18

Estruturando o projeto da API
A estrutura que usaremos: MVC (Estendido)

19

//Fluxo da requisição
Request → Middleware → Controller → Service → Repository → Banco

//Fluxo da resposta
Repository → Service → Controller → Resposta padronizada → Cliente

Padronizando respostas

Padronizando respostas
O problema: respostas inconsistentes

• APIs tornam-se difíceis de consumir

• Clientes precisam tratar casos especiais o tempo todo

• Aumenta o acoplamento entre frontend e backend

• O frontend precisa “adivinhar” o formato da resposta a cada endpoint

• Dificulta a documentação e gera dúvidas

• Complica o tratamento global de erros

21

Padronizando respostas
Exemplos de API inconsistente

22

// endpoint A
{ "user": { "name": "Ana" } }

// endpoint B
{ "data": { "product": "Notebook" } }

// endpoint C
{ "message": "ok", "name": "Pedro" }

// endpoint D (erro)
{ "status": 400, "msg": "invalid input" }

Padronizando respostas
O objetivo do formato consistente

23

✅ Tornar previsível

✅ Tornar fácil de consumir

✅ Padronizar sucesso e erro

✅ Simplificar testes

✅ Simplificar documentação (Swagger)

Padronizando respostas
Exemplos de padrões usados em APIs

24

// Padrão minimalista
{
 "data": { ... }
}
// Padrão minimalista com metadados
{
 "success": true,
 "data": { ... }
}
//Padrão "do Google"
{
 "data": { ... },
 "error": null
}

Padronizando respostas
Exemplos de padrões usados em APIs

25

//Padrão enriquecido
{
 "success": true,
 "data": { ... },
 "errors": [],
 "meta": {
 "timestamp": "...",
 "path": "/api/v1/users"
 }
}

Padronizando respostas

26

//Resposta de sucesso
{
 "success": true,
 "data": {},
 "meta": {}
}
//Resposta de erro
{
 "success": false,
 "error": {
 "message": "Validation failed",
 "details": [],
 "code": "BAD_REQUEST"
 },
 "meta": {}
}

Validação de dados

Validação de dados
Por que validação é importante?

• Evita falhas lógicas no backend

• Ex.: operações com campos faltando ou formatos inválidos

• Protege sua aplicação

• Entrada inválida é vetor comum de ataques (ex.: injections, payloads malformados)

• Evita erros difíceis de rastrear

• Validação clara → erros previsíveis → menor custo de manutenção

• Melhora a experiencia do usuário

• Mensagens de erro claras ajudam frontend a corrigir inputs antes mesmo de enviar

28

Validação de dados
O que acontece quando NÃO validamos os dados?

• Exemplos de problemas reais:

• Operações com valores undefined causam erros inesperados

• Scripts maliciosos podem chegar ao banco de dados

• O backend fica cheio de ifs e checagens manuais

• Controllers se tornam enormes e pouco legíveis

• A API retorna erros inconsistentes e difíceis de testar

29

Validação de dados
Validar manualmente é difícil e repetitivo

• Muito código repetido

• Não há reaproveitamento

• Fica difícil atualizar o schema

• Fácil de esquecer validações

• Erros inconsistentes

30

if (!req.body.email) { ... }
if (!req.body.email.includes("@")) { ... }

if (typeof req.body.age !== "number") { ... }
if (req.body.age < 18) { ... }

if (!Array.isArray(req.body.tags)) { ... }

Validação de dados
Bibliotecas mais usadas no mercado

31

🔷 Zod

• Tipos inferidos automaticamente para
TypeScript

• Sintaxe clara

• Ótimo para APIs modernas

🔷 Yup

• Popular no frontend, especialmente com React

• Muita compatibilidade com forms

🔷 class-validator

• Muito usado junto com
TypeORM

• Baseado em decorators

• Bom para aplicações OOP

Validação de dados
Exemplo básico com Zod

32

import { z } from "zod";

const userSchema = z.object({
 name: z.string().min(3),
 email: z.string().email(),
 age: z.number().int().min(18)
});

Validação de dados
Exemplo básico com Zod

33

import { z } from "zod";

const userSchema = z.object({
 name: z.string().min(3),
 email: z.string().email(),
 age: z.number().int().min(18)
});

//Validação
userSchema.parse(req.body);

Validação de dados
Exemplo de mensagens de erro do Zod

34

//Entrada
{
 "name": "A",
 "email": "invalido",
 "age": 15
}
//Resultado da validação
[
 { path: ["name"], message: "String must contain at least 3
character(s)" },
 { path: ["email"], message: "Invalid email" },
 { path: ["age"], message: "Number must be greater than or equal to
18" }
]

Validação de dados
Criando um middleware de validação

35

import { z } from "zod";
export const validate = (schema: z.Schema) => (req, res, next) => {
 try {
 schema.parse(req.body);
 next();
 } catch (err) {
 return res.status(400).json({
 success: false,
 error: {
 message: "Validation failed",
 details: err.errors,
 code: 400
 },
 meta: {
 path: req.path,
 timestamp: new Date().toISOString()
 }
 });
 }
 };

Validação de dados
Usando o middleware em uma rota

36

import { Router } from "express";
import { z } from "zod";
import { validate } from "../middlewares/validate";

const router = Router();
const createUserSchema = z.object({
 name: z.string().min(3),
 email: z.string().email(),
 password: z.string().min(6)
});
router.post(
 "/users",
 validate(createUserSchema),
 userController.create
);

Validação de dados
Validando Params e Query

37

const paramsSchema = z.object({
 id: z.string().uuid(),
});

const querySchema = z.object({
 page: z.string().optional(),
 limit: z.string().optional()
});

router.get(
 "/users/:id",
 validate(paramsSchema),
 validate(querySchema),
 userController.getUser
);

Validação de dados
Tipando

• Agora CreateUserDTO é totalmente seguro, porque:

• É IMPOSSÍVEL divergir do schema

• Se mudar a validação, o tipo muda junto

38

export type CreateUserDTO = z.infer<typeof createUserSchema>;

Validação de dados
Atualizando o middleware

39

import { z } from "zod";
export const validate = (schema: z.Schema) => (req, res, next) => {
 try {
 req.validated = schema.parse(req.body);
 next();
 } catch (err) {
 return res.status(400).json({
 success: false,
 error: {
 message: "Validation failed",
 details: err.errors,
 code: 400
 },
 meta: {
 path: req.path,
 timestamp: new Date().toISOString()
 }
 });
 }
 };

Validação de dados
Tipando

40

// types/index.d.ts
import * as express from 'express';

declare global {
 namespace Express {
 interface Request {
 validated?: any;
 }
 }
}

Documentando uma API

Documentando uma API
Por que documentar uma API?

✔ Facilita a comunicação entre equipes

• Frontend, backend, QA e DevOps precisam de um contrato claro

✔ Evita suposições e erros de integração

• Se a documentação é fraca, cada time interpreta a API de um jeito

✔ Ajuda novos desenvolvedores a entender o sistema

• Onboarding mais rápido, menos dúvidas, menos gargalos

42

Documentando uma API
Por que documentar uma API?

✔ Permite testes automatizados e ferramentas de inspeção

• Ex.: Postman, Insomnia, Swagger UI.

✔ Garante consistência durante a evolução da API

• Evita endpoints “escondidos” e comportamentos inesperados.

43

Documentando uma API
Problema com documentação manual

• Documentação manual significa:

• Arquivos .md que ficam desatualizados

• Escrever payloads e erros manualmente

• Não garantir consistência entre documentação e código

• Duplicação de trabalho

• Difícil acompanhar mudanças

➡ Precisamos de documentação sincronizada com o código.
44

Documentando uma API
OpenAPI + Swagger: por que usar?

✔ Padrão da indústria

• OpenAPI é o formato universal para documentar APIs REST.

✔ Compatível com várias ferramentas

• Swagger UI, Postman, Insomnia

• GitHub API renderer

• Geradores de SDK

✔ Permite documentação viva

• Atualiza automaticamente conforme a API cresce.
45

Documentando uma API
Usando a zod-to-openapi

46

npm install swagger-ui-express @asteasolutions/zod-to-openapi

npm i --save-dev @types/swagger-ui-express

Documentando uma API
Usando a zod-to-openapi - Schema

47

import { z } from 'zod'
import { extendZodWithOpenApi } from '@asteasolutions/zod-to-openapi';

extendZodWithOpenApi(z)

export const createProduct = z.object({
 name: z.string('O campo nome é obrigatório').openapi({ example: "Sanduicheira
Elétrica"}),
 description: z.string().openapi({ example: 'Design único e formato
inovador' }),
 price: z.number().positive().openapi({ description: 'Número maior que
zero' }),
 quantity: z.number().positive().openapi({ description: 'Número maior que
zero' }),
 image: z.string().url().openapi({ description: 'Uma URL válida' })
});

Documentando uma API
Usando a zod-to-openapi - Rotas

48

registry.registerPath({
 method: "get",
 path: "/products",
 description: "Retorna todos os produtos",
 responses: {
 200: {
 description: "Lista de produtos",
 content: {
 "application/json": {
 schema: productsResponseSchema
 }
 }
 },
 },
 tags: ["Products"]
})

Documentando uma API
Usando a zod-to-openapi - Gerador

49

import { OpenAPIRegistry, OpenApiGeneratorV3 } from "@asteasolutions/zod-to-
openapi";

export const registry = new OpenAPIRegistry();
export function buildOpenAPIDocument() {
 const generator = new OpenApiGeneratorV3(registry.definitions);
 const doc = generator.generateDocument({
 openapi: '3.0.0',
 info: {
 version: '1.0.0',
 title: 'Products API',
 description: 'API for managing products',
 },
 servers: [{ url: 'http://localhost:3000' }],
 })
 return doc;
}

Documentando uma API
Usando a zod-to-openapi - Configurando o server

50

import { buildOpenAPIDocument } from "./docs/openapi.js";

const app = createApp();

// build doc (gera a partir do registry preenchido pelas rotas)
const openapiDoc = buildOpenAPIDocument();

// serve swagger em /docs
app.use("/docs", swaggerUi.serve, swaggerUi.setup(openapiDoc));

Referências

• Project structure for an Express REST API when there is no "standard way"

• How to structure an Express.js REST API with best practices

• How to create a REST API with Node.js and Express

• REST API Design Rulebook, Mark Masse

• Designing API responses

• REST API Best Practices

• Zod
51

https://www.coreycleary.me/project-structure-for-an-express-rest-api-when-there-is-no-standard-way/
https://treblle.com/blog/egergr
https://blog.postman.com/how-to-create-a-rest-api-with-node-js-and-express/
https://www.speakeasy.com/api-design/responses
https://medium.com/@sukhadamorgaonkar28/rest-api-best-practices-239f4d0bd6f5
https://zod.dev/

Referências

• Schema validation in TypeScript with Zod

• A Complete Guide to Zod

• What Is OpenAPI?

52

https://blog.logrocket.com/schema-validation-typescript-zod/
https://betterstack.com/community/guides/scaling-nodejs/zod-explained/
https://swagger.io/docs/specification/v3_0/about/

Por hoje é só

53

