& UNIVERSIDADE
i:W®s) FEDERAL DO CEARA

S VNITA FO5 .
g€ CAMPUS QUIXADA

Boas praticas em APl REST

QXDO0279 - Desenvolvimento de Software para Web 2

Prof. Bruno Gois Mateus (brunomateus@ufc.br)

mailto:brunomateus@ufc.br

Agenda

* |Introducao
e TypeORM
e \ersionamento
 Paginacao

* Filtragem e Ordenacao

Introducao

Introducao

@ Por que estudar boas praticas em APIs?

 Criar uma API funcional é facil.

 Criar uma API solida, escalavel e facil de manter € outra historia

TypeORM

TypeORM

O que € um ORM?

e Software criado para funcionar como em:
 Um banco dados relacional
 Programas orientados a objetos

* Naturalmente elas nao se integram de forma simples

* Permite a interacao com um banco de dados relacional usando programacao OO

TypeORM

O que € um ORM?

* Serve como entre a aplicacao e o banco de dados

 Prometem um aumento de produtividade

e Evitando codigo boilerplate

e Téecnicas que possam ser nao ergondmicas ou idiomaticas

TypeORM

Vantagens

 Aumenta a velocidade do time de desenvolvimento
 Diminul o custo de desenvolvimento

« Abstrai a logica de interacao com o banco de dados
 Mais seguro

e Portabilidade

TypeORM

Desvantagens

e Custo de aprendizado do proprio ORM
« Desempenho

 Em geral, sao mais lentos que codigos que usam SQL diretamente

TypeORM

O que é?

e Eum para Node.js que suporta
* Facilita:
* A definicao de modelos de dados,
* A realizacao de consultas
* A execucao de operacoes CRUD

 Fortemente inspirado em ORMs com

e JavaScript (ES6)

e Doctrine

10

TypeORM

Conceitos basicos

* Classes que representam tabelas no banco de dados

e (Cada instancia da classe representa uma linha da tabela
* Propriedades da entidade que mapeiam para colunas da tabela

 Definem como as entidades se relacionam entre si, por exemplo, 1:1, 1:N, N:M

11

TypeORM

Instalacao das dependéncias necessarias

npm i1nstall typeorm reflect-metadata sglites

12

TypeORM

Configurando o tsconfig

{

"compilerOptions": {

"experimentalDecorators":

"emitDecoratorMetadata":

true,
TLrue

13

TypeORM

Criando o datasource

import "reflect-metadata';
import { DataSource } from "typeorm'";
import { User } from "./entity/User"; // Import your entities

export const AppDataSource = new DataSource ({

type: "sglite",

database: "database.sglite", // The file path for your database

entities: [User], // List of entities

synchronize: true, // Automatically create database schema (use
migrations 1n production)

logging: false, // Set to true to log SQOL queries

migrations: ["src/migrations/*.ts"]

}) s

14

TypeORM

Entidade

import { OneToMany } from "typeorm";
import { Post } from "./Post";

[eEnticyg |———— Define uma entidade

export class User {

@PrimaryGeneratedColumn () —— > Define a chave primaria

id: number;

@Column () EEEEEEEEEEEEEEEI——S

Mapeia o atributo username

username: string; para o atributo username da tabela

@Column ()
emall: string;

@Column ()
passwordHash: string;

@Column ()
fullName: string;

@Column ({ default: true })
s
isActive: boolean;

@OneToMany (() => Post, post => post.user) >
posts: Post[];

}

Atributo que possui um valor padrao

Define um relacionamento entre a tabela User e
Post. Com chave estrangeira em post.user

15

TypeORM

Repositorio
import { AppDataSource } from "../config/data-source";
import { Product } from "../entities/Product";

export const ProductRepository =
AppDataSource.getRepository (Product) .extend ({
findByName (name: string) {
return this.findOneBy ({ name });

}
}) s

16

TypeORM

Service
import { ProductRepository } from "../repositories/product.repository";
import { Product } from "../entities/Product";

export class ProductService {
async listAll ()

return ProductRepository.find();

J

async getById(1d: number) {
const product = await ProductRepository.findOneBy({ 1d });

1f (!product) throw new Error ("PRODUCT NOT FOUND") ;
return product;

J

17

TypeORM

Configurando o server

import express from "express";
import { AppDataSource } from "./config/data-source";

import { productRoutes } from "./modules/products/product.routes";
const app = express{()
app.use (express.json()) ;

// Inicializacdo do banco
AppDataSource.initialize ()

.then(() => console.log("ﬁi Database connected"))

.catch((err) => console.error(")(Frror connecting database:", err));

// Rotas da API
app.use ("/api/vl/products", productRoutes);

export default app;

18

Versionamento

Versionamento

! O problema: APIs evoluem

 Requisitos mudam
* Regras de negocio evoluem
 Campos sao adicionados, removidos ou alterados

 Formatos de resposta podem mudar

20

Versionamento

O que significa versionar uma API?

 Manter multiplas versdoes da mesma APl em funcionamento
 Permitir que clientes antigos continuem funcionando

* Dar liberdade para evolucao controlada da AP|

21

Versionamento

2> Quando o versionamento € necessario?

 Mudanca no formato da resposta

* Alteracao de significado de um campo

» Remocao de campos

 Mudancas incompativeis com versoes anteriores (breaking changes)

« Ex: Transformar um campo opcional em obrigatorio

22

Versionamento

Estrategias de versionamento

e Versionamento na URL
e \Versionamento via Header
* Versionamento via Query Param

* \ersionamento baseado em Content Negotiation (Accept Header)

23

Versionamento

. Versionamento na URL

* Vantagens

 Simples de entender

« Facil de testar

 Muito comum no mercado
 Desvantagens

A URL muda a cada versao

* Alguns puristas argumentam que a URL representa o recurso, nao a versao

24

Versionamento

4 Versionamento via Header

* Vantagens
« URL permanece Iimpa
* Mais alinhado com principios REST
 Desvantagens
* Menos visivel
* Mais dificil de testar manualmente
 Exige maior maturidade da equipe

* Duplicacao do comportamento do Accept

25

Versionamento

Versionamento via Query Param

* Vantagens
* Facil de implementar
e Simples de testar
 Desvantagens
 Pode gerar confusao

* Nao & considerado uma boa pratica consolidada

26

Versionamento
Content Negotiation

* Vantagens

* Muito elegante

 Bastante aderente ao REST
 Desvantagens

« Complexo

* Os clientes precisam saber quais cabecalhos usar antes de solicitar um
recurso

* Overkill para a maioria dos projetos

27

Versionamento

Boas praticas

* Projete pensando em extensibilidade
e Garanta compatibilidade retroativa
 Documentar todas as versoes

» Evitar alterar endpoints e respostas
 Conheca seus consumidores

* Defina uma politica de versionamento

 Publigue e mantenha um cronograma de releases

28

Versionamento

. Projete pensando em extensibilidade

* Algumas decisoes dificultam evolucao

e Cuidados comuns:

e Tipos como booleanos e arrays simples sao mais frageis

* Prefira estruturas extensiveis (objetos, enums bem pensados)

e Pense no “futuro” do dado desde a v1

<~ Um bom design inicial reduz a necessidade de novas versoes

29

Versionamento

4 Garanta compatibilidade retroativa (Backward Compatibility)

 Sempre que possivel, nao quebre clientes existentes

 Mudancas forcam consumidores a atualizar seus sistemas, muitas quebras em pouco
tempo reduzem a confianca na API

* APIs estaveis sao mais adotadas e mantidas por mais tempo
e Boas praticas:

» Usar testes automatizados para garantir que schemas de request/response nao
mudaram

* Integrar esses testes ao Cl para evitar releases quebrados

o = Compatibilidade reduz retrabalho, documentacao extra e suporte ao cliente.

30

Versionamento

Documente todas as versoes

 Nunca documente apenas a ultima versao da API

* Clientes podem estar usando versoes antigas

* Falta de documentacao dificulta manutencao e migracao
e Boas praticas:

 Documentar cada versao separadamente

 Manter um changelog claro explicando o que mudou

* Oferecer canais de atualizacao (e-mail, RSS, release notes)

<~ Changelogs ajudam consumidores a decidir se e quando migrar

31

Versionamento

Evite mudar endpoints ou formatos de resposta

 Alterar endpoints ou respostas existentes € uma das maiores causas de breaking changes
* Prefira:

* Criar novos endpoints

* Adicionar novos campos (em vez de alterar/remover os antigos)

 Exemplo:

X Mudar phone para array
Manter phone e adicionar phones

<~ APls devem evoluir por adicao, nao por modificacao destrutiva

32

Versionamento

Conheca seus consumidores

 Nem todo uso da API € explicito
e Clientes podem depender de comportamentos nao documentados
« Contrato invisivel

 Exemplo:

» Cliente acessa propriedades por indice em vez de nome

<~ Antes de mudar algo, entenda como a API € realmente usada

33

Versionamento

Defina uma politica clara de versionamento

* Especialmente em APls publicas ou monetizadas
* Inclua nos termos:

* O que é considerado breaking change

« Como e quando os clientes serao avisados

* Quanto tempo terao para migrar

< Transparencia aumenta confianca e adocao

34

Versionamento

& Publique e mantenha um cronograma de releases

 Consumidores precisam saber o que vai mudar e quando
e Boas praticas:

* |nformar datas de lancamento

* Avisar com antecedéncia sobre depreciacoes

* Monitorar uso das versoes antigas

e Nao remover versoes ainda muito utilizadas

< Um bom cronograma evita downtime e perda de receita para clientes

35

Paginacao

Paginacao

Introducao
* Refere-se a uma técnica utilizada no design e desenvolvimento de APls para
 Cada ou entradas

* O cliente da API pode entao solicitar paginas subsequentes para recuperar
dados adicionais

37

Paginacao

O problema de nao paginar

 Uma requisicao GET
 Degradacao da performance do backend

. => Paginacao no front

38

Paginacao

Vantagens de paginar

% Melhor desempenho
™ Uso eficiente de recursos

) Melhor experiéncia do usuario

5 Transferéncia de dados otimizada
-/ Escalabilidade e flexibilidade

K Tratamento de erros mais simples

39

Paginacao

¢ Melhor desempenho

* A paginacao reduz o tempo de resposta
 Diminui o esfor¢co de processamento no servidor

e Acelerando o consumo no cliente

40

Paginacao

I Uso eficiente de recursos

* Ao evitar o carregamento de grandes volumes de dados de uma so vez, a
paginacao reduz:

e Consumo de memoria
e Uso de CPU

* Trafego de rede

* |sso melhora a escalabilidade e pode até reduzir custos de infraestrutura

41

Paginacao

& Melhor experiéncia do usuario

* Os dados sao entregues de forma progressiva e controlada, permitindo:
e Carregamento mais rapido
* |nterfaces mais responsivas

 Navegacao mais simples em grandes listas

42

Paginacao

(> Transferéncia de dados otimizada

 Somente os dados realmente necessarios sao enviados pela rede, o que:
 Reduz o consumo de banda
 Melhora o desempenho em conexoes lentas

» Evita desperdicio de dados

43

Paginacao
~/ Escalabilidade e flexibilidade

* A paginacao permite que a API cresca junto com os dados, suportando:
 Grandes volumes de registros
e Multiplos dispositivos

e Diferentes padroes de consumo

44

Paginacao

K Tratamento de erros mais simples

 Em caso de falha:
e apenas a pagina afetada precisa ser reprocessada
* Nao € necessario recarregar todo o conjunto de dados

e |ss0o torna o sistema mais robusto e resiliente

45

Paginacao

Estratégias de paginacao

» Offset-based pagination
 Page-based pagination
 Keyset pagination

 [iIme-based pagination

 Cursor-based

46

Paginacao
Offset-based pagination

 Méetodo mais direto
o Utiliza dois parametros: e

* Implementacao direta quando se usa bancos de dados SQL

GET /users?offset=20&1limit=10 SELECT * FROM users
LIMIT 10 OFFSET 20

47

Paginacao
Offset-based pagination

Vantagens

 Muito simples de entender
e Facil de implementar

 Compativel com quase todos os
bancos e ORMs

« Bom pequenas bases de dados

X Desvantagens

 Baixa performance em grandes
volumes

* O banco precisa escanear cada
linha para realizar o salto

e Resultados inconsistentes se dados
forem inseridos/removidos

48

Paginacao
Offset-based pagination

@ Quando usar
 APIls internas
» Listagens pequenas

e Casos didaticos iniciais

49

Paginacao

Page-based pagination

 Permite que

GET /users?page=3&limit=10

50

Paginacao

Page-based pagination

Vantagens

* |ntuitiva para frontend e UX

e Elimina a chance de acessar uma
pagina nao existente

 Compativel com Ul tradicional
(paginas numeradas)

X Desvantagens

 Herda todos os problemas do
offset-based

51

Paginacao

Page-based pagination

@& Quando usar
* APIs publicas simples
e Dashboards administrativos

* Projetos educacionais

52

Paginacao

Keyset pagination

« Baseada em um campo ordenado
 Valor unico

e Usado em

GET /users??afterId=100&1imit=10

SELECT * FROM users
WHERE 1d > 100
ORDER BY i1d ASC
LIMIT 10

53

Paginacao

Keyset pagination

Vantagens

e Muito performatica
 Resultados estaveis

» |deal para grandes tabelas

X Desvantagens

 Depende de ordenacao
consistente

e Nao suporta navegacao aleatoria

 Funciona melhor apenas para
“proxima pagina”

54

Paginacao

Keyset pagination

@& Quando usar

 APIs REST com grandes volumes

* Logs, eventos, historico

55

Paginacao

Time-based pagination

« Baseada em um
o Utilizao para dividir e recuperar os registros

 Em geral, o cliente especifica o intervalo de tempo

GET /events? SELECT * FROM users
after=2025-01-01T10:00:002&1imit=10 WHERE createdAt >
2025-01-01T10:00:00
ORDER BY 1d createdAt
LIMIT 10

56

Paginacao

Time-based pagination

Vantagens X Desvantagens

* EXxcelente para dados temporais
 Funciona bem com streams e eventos

e Escala bem

 Pode haver conflitos se
timestamps nao forem unicos

e Depende de relogios consistentes

* Nao € genérica

57

Paginacao

Time-based pagination

@& Quando usar
 Logs
e Eventos

e Sistemas de monitoramento

58

Paginacao

Cursor-based pagination

* A cada requisicao
 Um marcador que
* Pode ser baseado em varios critérios:
e timestamp, chave primaria ou uma representacao codificada do registro

 Ex: Slack codifica informacoes em base64 usando nome de campo € seu
valor, bem como uma ordem. String opaca: dXNIcjpXMDdRQ1JQQTQ-=.

GET /users?cursor=dXN1cipXMDARQ1JQQOTQ&1imit=10

59

Paginacao

Cursor-based pagination

Vantagens

Alta performance

Resultados consistentes

|deal para feeds e scroll infinito
Escala muito bem

A |ogica interna pode ser alterada sem
impactar no codigo do cliente

X Desvantagens

« Mais dificil de implementar

e Nao permite pular paginas
arbitrariamente

* Mais dificil de depurar

60

Paginacao

Time-based pagination

@& Quando usar

* Feeds (Instagram, Twitter)
* APIs de alto trafego

e (Grandes volumes de dados

61

Paginacao

Time-based pagination

Navegacao

Estratégia Parametros Performance Consisténcia Facilidade Escala bem aleatédria

offset + limit X Baixa X Baixa X
Offset-based

page + limit X Baixa X Baixa Alta X
Page-based

afterld + limit Alta Alta h Média X
Keyset

| timestamp + limit ¥ Alta h Média h Média X

Time-based

cursor + limit Alta Alta X Baixa X

Cursor-based

Filtragem e Ordenacao

Referencias

e What is an ORM?

 What is an ORM — The Meaning of Object Relational Mapping Database Tools

 How to Version REST APIs: A Comprehensive Guide

* API Versioning: Strategies & Best Practices

« REST API Versioning: How to Version a REST API?

* AP]| Design Basics: Pagination

 What is REST API pagination?

64

https://www.prisma.io/dataguide/types/relational/what-is-an-orm
https://www.freecodecamp.org/news/what-is-an-orm-the-meaning-of-object-relational-mapping-database-tools/
https://blog.dreamfactory.com/version-rest-apis
https://www.xmatters.com/blog/api-versioning-strategies
https://restfulapi.net/versioning/
https://apisyouwonthate.com/blog/api-design-basics-pagination/
https://www.merge.dev/blog/rest-api-pagination

Referencias

» Unlocking the Power of AP| Pagination: Best Practices and Strategies

 REST API Design: Filtering, Sorting, and Pagination

 REST API Response Pagination, Sorting and Filtering

» Filtering Collections

65

https://dev.to/pragativerma18/unlocking-the-power-of-api-pagination-best-practices-and-strategies-4b49
https://www.moesif.com/blog/technical/api-design/REST-API-Design-Filtering-Sorting-and-Pagination/
https://restfulapi.net/api-pagination-sorting-filtering/
https://www.speakeasy.com/api-design/filtering-responses

Por hoje e soO

