
Prof. Bruno Góis Mateus (brunomateus@ufc.br)

Boas práticas em API REST
QXD0279 - Desenvolvimento de Software para Web 2

mailto:brunomateus@ufc.br

Agenda

• Introdução

• TypeORM

• Versionamento

• Paginação

• Filtragem e Ordenação

2

Introdução

Introdução
🧠 Por que estudar boas práticas em APIs?

• Criar uma API funcional é fácil.

• Criar uma API sólida, escalável e fácil de manter é outra história

4

TypeORM

TypeORM
O que é um ORM?

• ORM - Object Relational Mapper

• Software criado para funcionar como ponte entre a representação de dados em:

• Um banco dados relacional (tabelas, tuplas)

• Programas orientados a objetos (Classes, instâncias)

• Naturalmente elas não se integram de forma simples

• Permite a interação com um banco de dados relacional usando programação OO

• Manipulação dos dados como se fossem objetos, sem precisar escrever SQL

6

TypeORM
O que é um ORM?

• Serve como camada de abstração entre a aplicação e o banco de dados

• Prometem um aumento de produtividade

• Evitando código boilerplate

• Técnicas que possam ser não ergonômicas ou idiomáticas

7

TypeORM
Vantagens

• Aumenta a velocidade do time de desenvolvimento

• Diminui o custo de desenvolvimento

• Abstrai a lógica de interação com o banco de dados

• Mais seguro

• Portabilidade

8

TypeORM
Desvantagens

• Custo de aprendizado do próprio ORM

• Desempenho

• Em geral, são mais lentos que códigos que usam SQL diretamente

9

TypeORM
O que é?

• É um ORM para Node.js que suporta TypeScript e JavaScript (ES6)

• Facilita:

• A definição de modelos de dados,

• A realização de consultas

• A execução de operações CRUD

• Fortemente inspirado em ORMs com Hibernate, EntityFramework e Doctrine

10

TypeORM
Conceitos básicos

• Entidades:

• Classes que representam tabelas no banco de dados

• Cada instância da classe representa uma linha da tabela

• Atributos:

• Propriedades da entidade que mapeiam para colunas da tabela

• Relacionamentos:

• Definem como as entidades se relacionam entre si, por exemplo, 1:1, 1:N, N:M

11

TypeORM
Instalação das dependências necessárias

12

npm install typeorm reflect-metadata sqlite3

TypeORM
Configurando o tsconfig

• Classes que representam tabelas no banco de dados

• Cada instância da classe representa uma linha da tabela

13

{
 "compilerOptions": {
 "experimentalDecorators": true,
 "emitDecoratorMetadata": true
 }
}

TypeORM
Criando o datasource

• Classes que representam tabelas no banco de dados

• Cada instância da classe representa uma linha da tabela

14

import "reflect-metadata";
import { DataSource } from "typeorm";
import { User } from "./entity/User"; // Import your entities

export const AppDataSource = new DataSource({
 type: "sqlite",
 database: "database.sqlite", // The file path for your database
 entities: [User], // List of entities
 synchronize: true, // Automatically create database schema (use
migrations in production)
 logging: false, // Set to true to log SQL queries
 migrations: ["src/migrations/*.ts"]
});

TypeORM
Entidade

• Classes que representam tabelas no banco de dados

• Cada instância da classe representa uma linha da tabela

15

import { OneToMany } from "typeorm";
import { Post } from "./Post";

@Entity()
export class User {
 @PrimaryGeneratedColumn()
 id: number;

 @Column()
 username: string;

 @Column()
 email: string;

 @Column()
 passwordHash: string;

 @Column()
 fullName: string;

 @Column({ default: true })
 isActive: boolean;

 @OneToMany(() => Post, post => post.user)
 posts: Post[];
}

Define uma entidade

Define a chave primária

Mapeia o atributo username  
para o atributo username da tabela

Atributo que possui um valor padrão
Define um relacionamento entre a tabela User e

Post. Com chave estrangeira em post.user

TypeORM
Repositório

• Classes que representam tabelas no banco de dados

• Cada instância da classe representa uma linha da tabela

16

import { AppDataSource } from "../config/data-source";
import { Product } from "../entities/Product";

export const ProductRepository =
AppDataSource.getRepository(Product).extend({
 findByName(name: string) {
 return this.findOneBy({ name });
 }
});

TypeORM
Service

• Classes que representam tabelas no banco de dados

• Cada instância da classe representa uma linha da tabela

17

import { ProductRepository } from "../repositories/product.repository";
import { Product } from "../entities/Product";

export class ProductService {
 async listAll() {
 return ProductRepository.find();
 }

 async getById(id: number) {
 const product = await ProductRepository.findOneBy({ id });
 if (!product) throw new Error("PRODUCT_NOT_FOUND");
 return product;
 }

TypeORM
Configurando o server

• Classes que representam tabelas no banco de dados

• Cada instância da classe representa uma linha da tabela

18

import express from "express";
import { AppDataSource } from "./config/data-source";

import { productRoutes } from "./modules/products/product.routes";

const app = express();
app.use(express.json());

// Inicialização do banco
AppDataSource.initialize()
 .then(() => console.log("📦 Database connected"))
 .catch((err) => console.error("❌ Error connecting database:", err));

// Rotas da API
app.use("/api/v1/products", productRoutes);

export default app;

Versionamento

Versionamento
❗ O problema: APIs evoluem

• Requisitos mudam

• Regras de negócio evoluem

• Campos são adicionados, removidos ou alterados

• Formatos de resposta podem mudar

• Sem versionamento, qualquer mudança pode quebrar clientes existentes

20

Versionamento
O que significa versionar uma API?

• Manter múltiplas versões da mesma API em funcionamento

• Permitir que clientes antigos continuem funcionando

• Dar liberdade para evolução controlada da API

21

Versionamento
🤔 Quando o versionamento é necessário?

• Mudança no formato da resposta

• Alteração de significado de um campo

• Remoção de campos

• Mudanças incompatíveis com versões anteriores (breaking changes)

• Ex: Transformar um campo opcional em obrigatório

22

Versionamento
Estratégias de versionamento

• Versionamento na URL

• Versionamento via Header

• Versionamento via Query Param

• Versionamento baseado em Content Negotiation (Accept Header)

23

Versionamento
1⃣ Versionamento na URL

• Vantagens

• Simples de entender

• Fácil de testar

• Muito comum no mercado

• Desvantagens

• A URL muda a cada versão

• Alguns puristas argumentam que a URL representa o recurso, não a versão
24

GET /api/v1/users
GET /api/v2/users

Versionamento
2⃣ Versionamento via Header

• Vantagens

• URL permanece limpa

• Mais alinhado com princípios REST

• Desvantagens

• Menos visível

• Mais difícil de testar manualmente

• Exige maior maturidade da equipe

• Duplicação do comportamento do Accept
25

GET /api/users
Header: X-API-Version: 1

Versionamento
3⃣ Versionamento via Query Param

• Vantagens

• Fácil de implementar

• Simples de testar

• Desvantagens

• Pode gerar confusão

• Não é considerado uma boa prática consolidada

26

GET /api/users?version=1

Versionamento
4⃣ Content Negotiation

• Vantagens

• Muito elegante

• Bastante aderente ao REST

• Desvantagens

• Complexo

• Os clientes precisam saber quais cabeçalhos usar antes de solicitar um
recurso

• Overkill para a maioria dos projetos
27

Accept: application/vnd.myapi.v1+json

Versionamento
Boas práticas

• Projete pensando em extensibilidade

• Garanta compatibilidade retroativa

• Documentar todas as versões

• Evitar alterar endpoints e respostas

• Conheça seus consumidores

• Defina uma política de versionamento

• Publique e mantenha um cronograma de releases
28

Versionamento
1⃣ Projete pensando em extensibilidade

• Algumas decisões dificultam evolução

• Cuidados comuns:

• Tipos como booleanos e arrays simples são mais frágeis

• Prefira estruturas extensíveis (objetos, enums bem pensados)

• Pense no “futuro” do dado desde a v1

👉 Um bom design inicial reduz a necessidade de novas versões

29

Versionamento
2⃣ Garanta compatibilidade retroativa (Backward Compatibility)

• Sempre que possível, não quebre clientes existentes

• Mudanças forçam consumidores a atualizar seus sistemas, muitas quebras em pouco
tempo reduzem a confiança na API

• APIs estáveis são mais adotadas e mantidas por mais tempo

• Boas práticas:

• Usar testes automatizados para garantir que schemas de request/response não
mudaram

• Integrar esses testes ao CI para evitar releases quebrados

• 👉 Compatibilidade reduz retrabalho, documentação extra e suporte ao cliente.

30

Versionamento
3⃣ Documente todas as versões

• Nunca documente apenas a última versão da API

• Clientes podem estar usando versões antigas

• Falta de documentação dificulta manutenção e migração

• Boas práticas:

• Documentar cada versão separadamente

• Manter um changelog claro explicando o que mudou

• Oferecer canais de atualização (e-mail, RSS, release notes)

👉 Changelogs ajudam consumidores a decidir se e quando migrar

31

Versionamento
4⃣ Evite mudar endpoints ou formatos de resposta

• Alterar endpoints ou respostas existentes é uma das maiores causas de breaking changes

• Prefira:

• Criar novos endpoints

• Adicionar novos campos (em vez de alterar/remover os antigos)

• Exemplo:

❌ Mudar phone para array

✅ Manter phone e adicionar phones

👉 APIs devem evoluir por adição, não por modificação destrutiva

32

Versionamento
5⃣ Conheça seus consumidores

• Nem todo uso da API é explícito

• Clientes podem depender de comportamentos não documentados

• Contrato invisível

• Exemplo:

• Cliente acessa propriedades por índice em vez de nome

👉 Antes de mudar algo, entenda como a API é realmente usada

33

Versionamento
6⃣ Defina uma política clara de versionamento

• Especialmente em APIs públicas ou monetizadas

• Inclua nos termos:

• O que é considerado breaking change

• Como e quando os clientes serão avisados

• Quanto tempo terão para migrar

👉 Transparência aumenta confiança e adoção

34

Versionamento
7⃣ Publique e mantenha um cronograma de releases

• Consumidores precisam saber o que vai mudar e quando

• Boas práticas:

• Informar datas de lançamento

• Avisar com antecedência sobre depreciações

• Monitorar uso das versões antigas

• Não remover versões ainda muito utilizadas

👉 Um bom cronograma evita downtime e perda de receita para clientes
35

Paginação

Paginação
Introdução

• Refere-se a uma técnica utilizada no design e desenvolvimento de APIs para
recuperar grandes conjuntos de dados em páginas menores

• Cada página contém um número limitado de registros ou entradas

• O cliente da API pode então solicitar páginas subsequentes para recuperar
dados adicionais

37

Paginação
O problema de não paginar

• Uma requisição GET pode retorna milhares de registros

• Degradação da performance do backend

• Frontend difícil de renderizar => Paginação no front

• Escalabilidade comprometida

38

Paginação
Vantagens de paginar

🚀 Melhor desempenho

💾 Uso eficiente de recursos

🙂 Melhor experiência do usuário

🌐 Transferência de dados otimizada

📈 Escalabilidade e flexibilidade

🛠 Tratamento de erros mais simples

39

Paginação
🚀 Melhor desempenho

• A paginação reduz o tempo de resposta

• Diminui o esforço de processamento no servidor

• Acelerando o consumo no cliente

40

Paginação
💾 Uso eficiente de recursos

• Ao evitar o carregamento de grandes volumes de dados de uma só vez, a
paginação reduz:

• Consumo de memória

• Uso de CPU

• Tráfego de rede

• Isso melhora a escalabilidade e pode até reduzir custos de infraestrutura

41

Paginação
🙂 Melhor experiência do usuário

• Os dados são entregues de forma progressiva e controlada, permitindo:

• Carregamento mais rápido

• Interfaces mais responsivas

• Navegação mais simples em grandes listas

42

Paginação
🌐 Transferência de dados otimizada

• Somente os dados realmente necessários são enviados pela rede, o que:

• Reduz o consumo de banda

• Melhora o desempenho em conexões lentas

• Evita desperdício de dados

43

Paginação
📈 Escalabilidade e flexibilidade

• A paginação permite que a API cresça junto com os dados, suportando:

• Grandes volumes de registros

• Múltiplos dispositivos

• Diferentes padrões de consumo

44

Paginação
🛠 Tratamento de erros mais simples

• Em caso de falha:

• apenas a página afetada precisa ser reprocessada

• não é necessário recarregar todo o conjunto de dados

• Isso torna o sistema mais robusto e resiliente

45

Paginação
Estratégias de paginação

• Offset-based pagination

• Page-based pagination

• Keyset pagination

• Time-based pagination

• Cursor-based

46

Paginação
Offset-based pagination

• Método mais direto

• Utiliza dois parâmetros: LIMIT e OFFSET

• Implementação direta quando se usa bancos de dados SQL

47

SELECT * FROM users
LIMIT 10 OFFSET 20

GET /users?offset=20&limit=10

Paginação
Offset-based pagination

48

✅ Vantagens

• Muito simples de entender

• Fácil de implementar

• Compatível com quase todos os
bancos e ORMs

• Bom pequenas bases de dados

❌ Desvantagens

• Baixa performance em grandes
volumes

• O banco precisa escanear cada
linha para realizar o salto

• Resultados inconsistentes se dados
forem inseridos/removidos

Paginação
Offset-based pagination

49

🎯 Quando usar

• APIs internas

• Listagens pequenas

• Casos didáticos iniciais

Paginação
Page-based pagination

• Divide os dados em páginas de forma uniforme

• Permite que o tamanho da página seja escolhido

• O servidor calcula o offset

50

GET /users?page=3&limit=10
// offset = (page - 1) * limit

Paginação
Page-based pagination

✅ Vantagens

• Intuitiva para frontend e UX

• Elimina a chance de acessar uma
página não existente

• Compatível com UI tradicional
(páginas numeradas)

51

❌ Desvantagens

• Herda todos os problemas do
offset-based

Paginação
Page-based pagination

52

🎯 Quando usar

• APIs públicas simples

• Dashboards administrativos

• Projetos educacionais

Paginação
Keyset pagination

• Baseada em um campo ordenado

• Valor único

• Usado em tabelas grandes ou com dados que mudam com frequência

53

SELECT * FROM users
WHERE id > 100
ORDER BY id ASC
LIMIT 10

GET /users?afterId=100&limit=10

Paginação
Keyset pagination

✅ Vantagens

• Muito performática

• Resultados estáveis

• Ideal para grandes tabelas

54

❌ Desvantagens

• Depende de ordenação
consistente

• Não suporta navegação aleatória

• Funciona melhor apenas para
“próxima página”

Paginação
Keyset pagination

55

🎯 Quando usar

• APIs REST com grandes volumes

• Logs, eventos, histórico

Paginação
Time-based pagination

• Baseada em um critério de tempo

• Utiliza o timestamp para dividir e recuperar os registros

• Em geral, o cliente especifica o intervalo de tempo

56

SELECT * FROM users
WHERE createdAt >
2025-01-01T10:00:00
ORDER BY id createdAt
LIMIT 10

GET /events?
after=2025-01-01T10:00:00Z&limit=10

Paginação
Time-based pagination

✅ Vantagens

• Excelente para dados temporais

• Funciona bem com streams e eventos

• Escala bem

57

❌ Desvantagens

• Pode haver conflitos se
timestamps não forem únicos

• Depende de relógios consistentes

• Não é genérica

Paginação
Time-based pagination

58

🎯 Quando usar

• Logs

• Eventos

• Sistemas de monitoramento

Paginação
Cursor-based pagination

• A cada requisição os dados são retornados juntamente com um cursor

• Um marcador que destaca um item específico no conjunto de dados

• Pode ser baseado em vários critérios:

• timestamp, chave primária ou uma representação codificada do registro

• Ex: Slack codifica informações em base64 usando nome de campo e seu
valor, bem como uma ordem. String opaca: dXNlcjpXMDdRQ1JQQTQ=.

59

GET /users?cursor=dXNlcjpXMDdRQ1JQQTQ&limit=10

Paginação
Cursor-based pagination

✅ Vantagens

• Alta performance

• Resultados consistentes

• Ideal para feeds e scroll infinito

• Escala muito bem

• A lógica interna pode ser alterada sem
impactar no código do cliente

60

❌ Desvantagens

• Mais difícil de implementar

• Não permite pular páginas
arbitrariamente

• Mais difícil de depurar

Paginação
Time-based pagination

61

🎯 Quando usar

• Feeds (Instagram, Twitter)

• APIs de alto tráfego

• Grandes volumes de dados

Paginação
Time-based pagination

62

Estratégia Parâmetros Performance Consistência Facilidade Escala bem
Navegação
aleatória

Offset-based
offset + limit ❌ Baixa ❌ Baixa ✅ Alta ❌ ✅

Page-based
page + limit ❌ Baixa ❌ Baixa ✅ Alta ❌ ✅

Keyset
afterId + limit ✅ Alta ✅ Alta ⚠ Média ✅ ❌

Time-based
timestamp + limit ✅ Alta ⚠ Média ⚠ Média ✅ ❌

Cursor-based
cursor + limit ✅ Alta ✅ Alta ❌ Baixa ✅ ❌

Filtragem e Ordenação

Referências

• What is an ORM?

• What is an ORM – The Meaning of Object Relational Mapping Database Tools

• How to Version REST APIs: A Comprehensive Guide

• API Versioning: Strategies & Best Practices

• REST API Versioning: How to Version a REST API?

• API Design Basics: Pagination

• What is REST API pagination?
64

https://www.prisma.io/dataguide/types/relational/what-is-an-orm
https://www.freecodecamp.org/news/what-is-an-orm-the-meaning-of-object-relational-mapping-database-tools/
https://blog.dreamfactory.com/version-rest-apis
https://www.xmatters.com/blog/api-versioning-strategies
https://restfulapi.net/versioning/
https://apisyouwonthate.com/blog/api-design-basics-pagination/
https://www.merge.dev/blog/rest-api-pagination

Referências

• Unlocking the Power of API Pagination: Best Practices and Strategies

• REST API Design: Filtering, Sorting, and Pagination

• REST API Response Pagination, Sorting and Filtering

• Filtering Collections

65

https://dev.to/pragativerma18/unlocking-the-power-of-api-pagination-best-practices-and-strategies-4b49
https://www.moesif.com/blog/technical/api-design/REST-API-Design-Filtering-Sorting-and-Pagination/
https://restfulapi.net/api-pagination-sorting-filtering/
https://www.speakeasy.com/api-design/filtering-responses

Por hoje é só

66

